Skip to main content

Terrestrial Neutron-Induced Failures in Semiconductor Devices and Relevant Systems and Their Mitigation Techniques

  • Chapter
  • First Online:
Dependability in Electronic Systems

Abstract

Scaling down of semiconductor devices to sub-100 nm technology encounters a wide variety of technical challenges like V th variation [1], negative bias temperature instability (NBTI) [2], short-channel effect [3], gate leakage [4], and so on. Terrestrial neutron-induced single-event upset (SEU) is one of such key issues that can be a major setback in scaling.

Eishi Ibe

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Sugii, R. Tsuchiya, T. Ishigaki, Y. Morita, H. Yoshimoto, K. Torii, and S. Kimura, “Comprehensive Study on V th Variability in Silicon on Thin BOX (SOTB) CMOS with Small Random-Dopant Fluctuation: Finding a Way to Further Reduce Variation,” IEDM, San Francisco, December 15–17, pp. 249–253 (2008).

    Google Scholar 

  2. R. Duarte, L. Martins-Filho, G. Knop, and R. Prado, “A Fault-Tolerant Attitude Determination System Based on COTS Devices,” IOLTS 2008, Greece, July 6–9, 2008, No.4.3, pp. 85–92 (2008).

    Google Scholar 

  3. D. Villanueva, A. Pouydebasque, E. Robilliart, T. Skotnicki, E. Fuchs, and H. Jaoue, “Impact of the Lateral Source/Drain Abruptness on MOSFET Characteristics and Transport Properties,” 2003 IEDM, Washington, DC, December 7–10, 2003, No.9.4 (2003).

    Google Scholar 

  4. H.-S. P. Wong, “Beyond the Conventional Transistor,” IBM J. Res. Develop., Vol. 46, No. 2/3, pp. 133–168 (2002).

    Article  Google Scholar 

  5. E. Ibe, “Current and Future Trend on Cosmic-Ray-Neutron Induced Single Event Upset at the Ground Down to 0.1-Micron-Device,” The Svedberg Laboratory Workshop on Applied Physics, Uppsala, May 3, 2001, No.1 (2001).

    Google Scholar 

  6. JEDEC, “Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices: JESD89A,” JEDEC STANDARD, JEDEC Sold State Technology Association, Arlington, VA., USA, No.89, pp. 1–85 (2006).

    Google Scholar 

  7. JEITA, “JEITA SER Testing Guideline,” EIAJ EDR-4705, Tokyo, Japan, pp. 1–62 (2005).

    Google Scholar 

  8. IEC, “Part 38: Soft Error Test Method for Semiconductor Devices with Memory,” Semiconductor Devices. Mechanical and Climatic Test Methods,” IEC60749-38, Edition 1.0, pp. 1–9 (2008).

    Google Scholar 

  9. Automotive Electronics Council, “Failure Mechanism Based Stress Test Qualification for Integrated Circuits,” AEC-Q100-Rev.G, May 14 (2007).

    Google Scholar 

  10. T. Heijmen, E. Ibe, P. Roche, F. Vermunt, and A. Bougerol, “Panel:SER in Automotive: What is the Impact of the AEC-Q100-G Spec?,” IOLTS 2008, Greece, July 6–9, 2008, No.S3, p. 161 (2008).

    Google Scholar 

  11. D. Radaelli, H. Puchner, P. Chia, S. Wong, and S. Daniel, “Investigation of Multi-Bit Upsets in a 150 nm Technology SRAM Device,” Trans. Nucl. Sci., Vol. 52, No. 6, pp. 2433–2437 (2005).

    Article  Google Scholar 

  12. O. Musseau, Gardic P. Roche, T. Corbiere, R.A. Reed, S. Buchner, et al., “Analysis of Multiple Bit Upsets in a CMOS SRAM,” Trans. Nucl. Sci., Vol. 43, No. 6, pp. 2879–2888 (1996).

    Article  Google Scholar 

  13. J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of Multi-Bit Soft Error Events in Advanced SRAMs,” 2003 IEEE International Electron Devices Meeting, Washington, DC, December 7–10, 2003, No.21.4 (2003).

    Google Scholar 

  14. E. Ibe, H. Kameyama, Y. Yahagi, K. Nishimoto, and Y. Takahashi, “Distinctive Asymmetry in Neutron-Induced Multiple Error Patterns of 0.13 μm Process SRAM,” The 6th International Workshop on Radiation Effects on Semiconductor Devices for Space Application, Tsukuba, October 6–8, 2004, pp. 19–23 (2004).

    Google Scholar 

  15. N. Seifert, and V. Zia, “Assessing the Impact of Scaling on the Efficacy of Spatial Redundancy Based Mitigation Schemes for Terrestrial Applications,” SELSE3, Austin, TX, April 3, 4, 2007 (2007).

    Google Scholar 

  16. E. Ibe, S. Chung, S. Wen, H. Yamaguchi, Y. Yahagi, H. Kameyama, S. Yamamoto, and T. Akioka, “Spreading Diversity in Multi-Cell Neutron-Induced Upsets with Device Scaling,” 2006 CICC, San Jose, CA, September 10–13, pp. 437–444 (2006).

    Google Scholar 

  17. K. Pagiamtzis, N. Azizi, and F. Najm, “A Soft-Error Tolerant Content-Addressable Memory (CAM) Using An Error-Correcting-Match Scheme,” Idem., pp. 301–304 (2006).

    Google Scholar 

  18. B.D. Olson, D. Ball, K.M. Warren, L.W. Massengill, N.F. Haddad, S.E. Doyle, and D. McMorrow, “Simultaneous Single Event Charge Sharing and Parasitic Bipolar Conduction in a Highly-Scaled SRAM Design,” Trans. Nucl. Sci., Vol. 52, No. 6, pp. 2132–2136 (2005).

    Article  Google Scholar 

  19. O.A. Amusan, L.W. Massengill, B.L. Bhuva, P.R. Fleming, and M.L. Alles, “Charge Collection and Sharing in a 130 nm CMOS Technology,” Trans. Nucl. Sci., Vol. 53, No. 6, pp. 3253–3258 (2006).

    Article  Google Scholar 

  20. O.A. Amusan, L.W. Massengill, M.P. Baze, B.L. Bhuva, A.F. Witulski, J.D. Black, A. Balasubramanian, M.C. Casey, D.A. Black, J.R. Ahlbin, R.A. Reed, and M.W. McCurdy, “Mitigation Techniques for Single Event Induced Charge Sharing in a 90 nm Bulk CMOS Process,” IRPS 2008, Phoenix, Arizona, April 27–May 1, No.5A.1 (2008).

    Google Scholar 

  21. K. Osada, K Yamaguchi, Y. Saitoh, and T. Kawahara, “Cosmic-Ray Multi-Error Immunity for SRAM, Based on Analysis of the Parasitic Bipolar Effect,” Symp. VLSI Circuits Dig., pp. 255–256 (2003).

    Google Scholar 

  22. T. Nakauchi, N. Mikami, A. Oyama, H. Kobayashi, H. Usui, and J. Kase, “A Novel Technique for Mitigating Neutron-Induced Multi-Cell Upset by Means of Back Bias,” IRPS 2008, Phoenix, Arizona, April 27–May 1, 2008, No.2F.2, pp. 187–191 (2008).

    Google Scholar 

  23. M. Baze, J. Wert, J. Clement, M. Hubert, A. Witulski, O.A. Amusan, L. Massengill, and D. McMorrow, “Propagating SET Characterization Technique for Digital CMOS Libraries,” Trans. Nucl. Sci., Vol. 53, No. 6, pp. 3472–3478 (2006).

    Article  Google Scholar 

  24. V. Ferlet-Cavrois, V. Pouget, D. McMorrow, J.R. Schwank, N. Fel, F. Essely, R.S. Flores, P. Paillet, M. Gaillardin, D. Kobayashi, J.S. Melinger, O. Duhamel, P.E. Dodd, and M.R. Shaneyfelt, “Investigation of the Propagation Induced Pulse Broadening (PIPB) Effect on Single Event Transients in SOI and Bulk Inverter Chains,” Trans. Nucl. Sci., Vol. 55, No. 6, pp. 2842–2853 (2008).

    Article  Google Scholar 

  25. E.H. Cannon, and M., Cabanas-Holmen, “Heavy Ion and High Energy Proton-Induced Single Event Transients in 90 nm Inverter, NAND and NOR Gates,” Trans. Nucl. Sci., Vol. 56, No. 6, pp. 3511–3518 (2009).

    Article  Google Scholar 

  26. T. Makino, D. Kobayash, K. Hirose, D. Takahashi, S. Ishii, M. Kusano, S. Onoda, T. Hirao, and T. Ohshima, “Soft-Error Rate in a Logic LSI Estimated from SET Pulse-Width Measurements,” Idem., pp. 3180–3184 (2009).

    Google Scholar 

  27. T. Calin, M. Nicolaidis, and R. Velazco, “Upset Hardened Memory Design for Submicron CMOS Technology,” Trans. Nucl. Sci., Vol. 43, No. 6, pp. 2874–2878 (1993).

    Article  Google Scholar 

  28. S. Mitra, M. Zhang, N. Seifert, T. Mak, and K.S. Kim, “Built-In Soft Error Resilience for Robust System Design,” ICICDT2007, Austin, TX, May 18–20, pp. 263–268 (2009).

    Google Scholar 

  29. T. Uemura, Y. Tosaka, H. Matsuyama, K. Shono, K. Takahisa, M. Fukuda, and K. Hatanaka, “Robust Against Soft-Error Latch for Protecting SEU by Charge Sharing and SET on Inter-Clock,” IRPS 2010, Anaheim, CA, USA, May 2–6 (2010).

    Google Scholar 

  30. H.-H. Lee, K. Lilja, and S. Mitra, “Design of a Sequential Logic Cell Using LEAP: Layout Design Through Error Aware Placement,” SELSE6, Stanford University, Stanford, CA, USA, March 23, 24 (2010).

    Google Scholar 

  31. M. Cabanas-Holmen, E.H. Cannon, A. Kleinosowski, J. Ballast, J. Killens, and J. Socha, “Clock and Reset Transients in a 90 nm RHBD Single-Core Tilera Processor,” Trans. Nucl. Sci., Vol. 53, No. 6, pp. 3505–3510 (2009).

    Google Scholar 

  32. N. Seifert, B. Gill, M. Zhang, V. Zia, and V. Ambrose, “On the Scalability of Redundancy Based SER Mitigation Schemes,” ICICDT2007, Austin, TX, May 18–20, No.G2, pp. 197–205 (2007).

    Google Scholar 

  33. A. Lesea, and K. Castellani-Coulie, “Experimental Study and Analysis of Soft Errors in 90 nm Xilinx FPGA and Beyond,” 2007 RADECS, Deauville, France, September 10–14, No.DWL-13 (2007).

    Google Scholar 

  34. D. Skarin, and J. Karlsson, “Software Mechanisms for Tolerating Soft Errors in an Automotive Brake-Controller,” WDSN, Estoril, Lisbon, Portugal, June 29, 2009, pp. D34–D38.

    Google Scholar 

  35. S. Wen, A. Silburt, and R. Wong, “IC Component SEU Impact Analysis,” SELSE4, University of Texas at Austin, Austin, TX, March, 26, 27 (2008).

    Google Scholar 

  36. E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Scaling Effects on Neutron-Induced Soft Error in SRAMs Down to 22 nm Process,” WDSN, Estoril, Lisbon, Portugal, June 29 (2009).

    Google Scholar 

  37. E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of Scaling on Neutron-Induced Soft Error in SRAMs from a 250 to a 22 nm Design Rule,” IEEE Trans. Electron Devices, Vol. 57, No. 7, pp. 1527–1538 (2010).

    Google Scholar 

  38. T. Nakamura, M. Baba, E. Ibe, Y. Yahagi, and H. Kameyama, “Terrestrial Neutron-Induced Sift-Errors in Advanced Memory Devices,” New Jersey, World Scientific (2008).

    Book  Google Scholar 

  39. C. Hu, “Alpha-Particle-Induced Field and Enhanced Collection of Carriers,” IEEE Electron Device Lett., EDL-3, No. 2, pp. 31–34 (1982).

    Article  Google Scholar 

  40. E. Ibe, Y. Yahagi, F. Kataoka, Y. Saito, A. Eto, and M. Sato, “A Self-Consistent Integrated System for Terrestrial-Neutron Induced Single Event Upset of Semiconductor Devices at the Ground,” 2002 ICITA, Bathurst, Australia, November 25–28, 2002, No.273–221 (2002).

    Google Scholar 

  41. Y. Yahagi, E. Ibe, Y. Saito, A. Eto, and M. Sato, “Self-Consistent Integrated System for Susceptibility to Terrestrial-Neutron Induced Soft-Error of Sub-quarter Micron Memory Devices,” 2002 International Integrated Reliability Workshop, Stanford Sierra Camp, S. Lake Tahoe, CA, pp. 143–143 (2002).

    Google Scholar 

  42. E. Ibe, S. Chung, S. Wen, Y. Yahagi, H. Kameyama, S. Yamamoto, T. Akioka, and H. Yamaguchi, “Valid and Prompt Track-Down Algorithms for Multiple Error Mechanisms in Neutron-Induced Single Event Effects of Memory Devices,” RADECS, Athens, Greece, September 27–29, 2006, No. D-2 (2006).

    Google Scholar 

  43. K. Johansson, P. Dyreklev, B. Granbom, N. Olsson, J. Blomgren, and P-U. Renberg, “Energy-Resolved Neutron SEU Measurements from 22 to 13.0 MeV,” Trans. Nucl. Sci., Vol. 45, No. 6, pp. 2519–2526 (1998).

    Article  Google Scholar 

  44. A.V. Prokofiev, O. Bystrom, C. Ekstrom, V. Ziemann, J. Blomgren, U.S. Pomp, S., M. Osterlund, and U. Tippawan, “The TSL Neutron Beam Facility,” 10th Symposium on Neutron Dosimetry, Uppsala, Sweden, June 12–13, 2003, Lecture A1–4 (2006).

    Google Scholar 

  45. M. Baba, H. Okamura, M. Hagiwara, T. Itoga, S. Kamada, Y. Yahagi, and E. Ibe, “Installation and Application of An Intense 7Li(p,n) Neutron Source for 20–90 MeV Region,” Radiat. Prot. Dosimetry, Vol. 123, No. 1–4, pp. 13–17 (2007).

    Article  Google Scholar 

  46. H.W. Bertini, A.H. Culkowski, O.W. Hermann, N.B. Gove, and M.P. Guthrie, “High Nnergy (E < 100 GeV) Intranuclear Cascade Model for Nucleons and Pions Incident on Nuclei and Comparisons with Experimental Data,” Phys. Rev. C, Vol. 17, No. 4, pp. 1382–1394 (1978).

    Article  Google Scholar 

  47. I. Dostrovsky, Z. Fraenkel, and G. Friedlander, “Monte Carlo Calculations of Nuclear Evaporation Process. III. Applications to Low-Energy Reactions,” Phys. Rev., Vol. 113, No. 3, pp. 3.83–702 (1959).

    Google Scholar 

  48. E. Ibe, Y. Yahagi, H. Kameyama, and Y. Takahashi, “Single Event Effects of Semiconductor Devices at the Ground,” Ionizing Radiat, Vol. 30, No. 7, pp. 263–281 (2004).

    Google Scholar 

  49. S. Furihata, “Parameters Used in GEM”, Thesis for PhD, Tohoku University, pp. 18–20 (2002)

    Google Scholar 

  50. F. Bertland, and R. Peele, “Complete Hydrogen and Herium Particle Spectra from 30- to 60-MeV Proton Bombardment of Nuclei with A=12 to 209 and Comparison with the Intranuclear Cascade Model,” Phys. Rev. C, Vol. 8, No. 3, pp. 1045–1064 (1973).

    Article  Google Scholar 

  51. K.M. Warren, J.D. Wilkinson, R.A. Weller, B.D. Sierawski, R.A. Reed, M.E. Porter, M.H. Mendenhall, and R.D. Schrimpf, L.W. Massengill, “Predicting Neutron Induced Soft Error Rates: Evaluation of Accelerated Ground Based Test Methods,” IRPS 2008, Phoenix, AZ, April 27–May 1, No.5A.2, pp. 473–477 (2008)

    Google Scholar 

  52. P.W. Lisowski, “The Los Alamos National Laboratory Spallation Neutron Sources,” Nucl. Sci. Eng., Vol. 103, pp. 208–218 (1990).

    Google Scholar 

  53. M. Baba, M. Takada, T. Iwasaki, S. Matsuyama, T. Nakamura, H. Ohguchi, T. Nakao, T. Sanami and N. Hirakawa, “Development of Monoenergetic Neutron Calibration Fields Between 8 keV and 15 MeV,” Nucl. Instrum. Methods Phys. Res. A, Vol. 376, pp. 115–123 (1996).

    Article  Google Scholar 

  54. A. Dixit, R. Heald, and A. Wood, “Trends from Ten Years of Soft Error Experimentation,” SELSE 5, Stanford University, Stanford, CA, March 24, 25 (2009).

    Google Scholar 

  55. S. Wen, “Systematical Method of Quantifying SEU FIT,” IOLTS 2008, Greece, July 6–9, 2008, pp. 109–116 (2008).

    Google Scholar 

  56. G. Schindlbeck, and C. Slayman, “Neutron-Induced Logic Soft Errors in DRAM Technology and Their Impact on Reliable Server Memory,” SELSE3, Austin, TX, April 3, 4, 2007 (2007).

    Google Scholar 

  57. R.C. Baumann, and E.B. Smith, “Neutron-Induced Boron Fission as a Major Source of Soft Errors in Deep Submicron SRAM Devices,” 2000 IEEE Int'l Reliability Physics Symposium Proceedings, San Jose, CA, April 10–13, pp. 152–157 (2000).

    Google Scholar 

  58. E.W. Blackmore, “Development of a Large Area Neutron Beam for System Testing at TRIUMF,” 2009 IEEE Radiation Effects Data Workshop, Quebec City, Canada, July 20–24, pp. 157–160 (2009).

    Google Scholar 

  59. A.V. Prokofiev, J. Blomgren, R. Nolte, S. Rottger, S.P. Platt, and A.N. Smirnov, “Characterization of the ANITA Neutron Source for Accelerated SEE Testing at The Svedberg Laboratory,” Idem., pp. 166–173 (2009).

    Google Scholar 

  60. H. Sakai, H. Okamura, H. Otus, T. Wakasa, S. Ishida, N. Sakamoto, T. Uesaka, Y. Satou, S. Fujita, and K. Hatanaka, “Facility for the (p,n) polarization transfer measurement,” Nucl. Instrum. Methods Phys. Res.. Section A, Vol. 369, pp. 120–134 (1996).

    Article  Google Scholar 

  61. S.P. Platt, and Z. Torok, “Charge-Collection and Single-Event Upset Measurements at the Isis Neutron Source,” 2007 RADECS, Deauville, France, September 10–14, 2007, No.F-2 (2007).

    Google Scholar 

  62. H. Kobayashi, H. Usuki, K. Shiraishi, H. Tsuchiya, N. Kawamoto, G. Kase, and J. Merchant, “Comparison Between Neutron-Induced System-SER and Accelerated-SER in SRAMs,” 2004 IRPS, April 25–29, Phoenix, AZ, pp. 288–293 (2004).

    Google Scholar 

  63. A. Lesea, and J. Fabula, “Continuing Experiments on Atmospheric Neutron Effects on Deep Sub-micron Integrated Circuits,” RADECS, Athens, Greece, September 27–29, 2006, No.D-4 (2006).

    Google Scholar 

  64. J-L. Autran, P. Roche, J. Borel, C. Sudre, C., Castellani-Coulie, D. Muntean, T. Parrassin, G. Gasiot, and J.-P. Schoellkop, “Altitude SEE Test European Platform (ASTEP): Project Overview, First Results in CMOS 130 nm and Perspectives,” Idem., No.D-5 (2003).

    Google Scholar 

  65. J.L. Autran, P. Roche, S. Sauze, G. Gasiot, D. Munteanu, P. Loaiza, M. Zampaolo, J. Borel, S. Rozov, and E. Yakushev, “Combined Altitude and Underground Real-Time SER Characterization of CMOS Technologies on the ASTEP-LSM Platform,” ICICDT2007, Austin, TX, May 18–20, pp. 113–120 (2009).

    Google Scholar 

  66. Y. Tosaka, R. Takasu, T. Uemura, H. Ehara, H. Matsuyama, S. Satoh, A. Kawai, and M. Hayashi, “Simultaneous Measurement of Soft Error Rate of 90 nm CMOS SRAM and Cosmic Ray Neutron Spectra at the Summit of Mauna Kea,” IRPS 2008, Phoenix, AZ, April 27–May 1, 2008, No.SE01, pp. 727–728 (2008).

    Google Scholar 

  67. B.D. Sierawski, J.A. Pellish, R.A. Reed, R.D. Schrimpf, K.M. Warren, R.A. Weller, M.H. Mendenhal, A.D. Tipton, M.A. Xapsos, R.C. Baumann, X. Deng, M.J. Campola, M.R. Friendlich, H.S. Kim, A.M. Phan, and C.M. Seidleck, “Impact of Low-Energy Proton Induced Upsets on Test Methods and Rate Predictions,” Trans. Nucl. Sci., Vol. 56, No. 6, pp. 3085–3092 (2009).

    Article  Google Scholar 

  68. B.D. Sierawski, K.M. Warren, R.A. Reed, R.A. Weller, M.M. Mendenhall, R.D. Schrimpf, and R.C. Baumann, “Contribution of Low-Energy Neutrons to Upset Rate in a 65 nm SRAM,” IRPS, Anaheim, CA, USA, May 2–6, 2010, No.197 (2010).

    Google Scholar 

  69. D.F. Heidel, P.W. Marshall, J.A. Pellish, K.P. Rodbell, K.A. LaBe, J.R. Schwank, S.E. Rauch, M.C. Hakey, M.D. Berg, C.M. Castaneda, P.E. Dodd, M.R. Friendlich, A.D. Phan, C.M. Seidleck, M.R. Shaneyfelt, and M.A. Xapsos, “Single-Event Upsets and Multiple-Bit Upsets on a 45 nm SOI SRAM,” Trans. Nucl. Sci., Vol. 56, No. 6, pp. 3499–3504 (2009).

    Article  Google Scholar 

  70. R.K. Lawrence, J.F. Ross, N. Haddad, D. Albrect, R.A. Reed, and M.A. McMahan-Norris, “Soft Error Sensitivities in 90 nm Bulk CMOS SRAMs,” 2009 IEEE Radiation Effects Data Workshop, July 20–24, Quebec, Canada, pp. 123–126 (2009).

    Google Scholar 

  71. C. Slayman, “Accuracy of Various Broad Spectrum Neutron Sources for Accelerated Soft Error Testing,” SELSE6, Stanford University, Stanford, CA, March 23, 24 (2010).

    Google Scholar 

  72. H. Chapman, E. Landman, A. MargalitIlovich, Y.-P. Fang, A.S. Oates, D. Alexandrescu, and O. Lauzeral, “A Multi-Partner Soft Error Rate Analysis of an Infini Band Host Channel Adapter,” SELSE6, Stanford University, Stanford, CA, March 23, 24 (2010).

    Google Scholar 

  73. H. Ando, and S. Hatanaka, “Accelerated Testing of a 90 nm SPARC3.4 V Microprocessor for Neutron SER,” SELSE3, Austin, TX, April 3, 4 (2007).

    Google Scholar 

  74. A.L. Silburt, A. Evans, I. Perryman, S.-J. Wen, and D. Alexandrescu, “Design for Soft Error Resiliency in Internet Core Routers,” Trans. Nucl. Sci., Vol. 56, No. 6, pp. 3551–3555 (2009).

    Article  Google Scholar 

  75. L. Borucki, G. Schindlbeck, and C. Slayman, “Comparison of Accelerated DRAM Soft Error Rates Measured at Component and System Level,” IRPS 2008, Phoenix, AZ, April 27–May 1, No.5A.4 (2008).

    Google Scholar 

  76. K. Shimbo, T. Toba, E. Ibe, and K. Nishi, “Correlation of Mitigation of Soft-Error Rate of Routers Between Neutron Irradiation Test and Field Soft-Error Data,” IEICE Tech. Rep., Vol. 109, No. 317, 318, pp. 51–55 (2009) (In Japanese).

    Google Scholar 

  77. E. Ibe, H. Kameyama, Y. Yahagi, and H. Yamaguchi, “Single Event Effects as a Reliability Issue of IT Infrastructure,” ICITA, July 3–7, 2005, Sydney, Vol. I, pp. 555–53.0 (2005).

    Google Scholar 

  78. N. Carter, “Cross-Layer Reliability,” SELSE6, Stanford University, Stanford, CA, March 23, 24 (2010).

    Google Scholar 

  79. A. Sanyal, S. Alam, and S. Kundu, “A Built-In Self-Test Scheme for Soft Error Rate Characterization,” IOLTS 2008, Greece, July 6–9, 2008, No.3.3, pp. 65–72 (2008).

    Google Scholar 

  80. S. Prejean, “Neutron Soft Error Rate Testing of AMD Microprocessors,” SELSE6, Stanford University, Stanford, CA, March 23, 24, 2010 (2010).

    Google Scholar 

  81. A. Balasubramanian, B.L. Bhuva, L.W. Massengill, B. Narasimham, R.L. Shuler, T.D. Loveless, and W. T. Holman, “A Built-In Self-Test (BIST) Technique for Single-Event Testing in Digital Circuits,” Trans. Nucl. Sci., Vol. 55, No. 6, pp. 3130–3135 (2009).

    Article  Google Scholar 

  82. T. Wang, Z. Zhang, L. Chen, A. Dinh, and R. Shuler, “A Novel Bulk Built-In Current Sensor for Single-Event Transient Detection,” SELSE6, Stanford University, Stanford, CA, March 23, 24 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyasu Kanekawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kanekawa, N., Ibe, E.H., Suga, T., Uematsu, Y. (2011). Terrestrial Neutron-Induced Failures in Semiconductor Devices and Relevant Systems and Their Mitigation Techniques. In: Dependability in Electronic Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6715-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6715-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6714-5

  • Online ISBN: 978-1-4419-6715-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics