Skip to main content

In Vivo Myocardial Material Properties and Stress Distributions in Normal and Failing Human Hearts

  • Chapter
  • First Online:
Patient-Specific Modeling of the Cardiovascular System

Abstract

A noninvasive method for estimating myocardial material properties in vivo would be of great value in the design and evaluation of new surgical and medical strategies to treat and/or prevent heart failure. Once the material properties for the myocardium are established, the effect of therapeutic changes on regional geometry (i.e., surgical remodeling) and/or material properties (i.e., medicine, gene therapy, and cell therapy) can be evaluated and the success or failure of a proposed therapy predicted. With clinical experience, such a method could be used as a diagnostic modality to risk stratify patients early after a myocardial infarction (MI) who are at risk for adverse remodeling and the development of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aurigemma GP, Zile MR, Gaasch WH. Lack of relationship between Doppler indices of diastolic function and left ventricular pressure transients in patients with definite diastolic heart failure. Am Heart J 2004;148(3):E12.

    Article  PubMed  Google Scholar 

  2. Axel L, Dougherty L. Heart wall motion – Improved method of spatial modulation of magnetization for MR imaging. Radiology 1989;172(2):349–350.

    PubMed  CAS  Google Scholar 

  3. Bovendeerd PHM, Arts T, Delhaas T, Huyghe JM, Vancampen DH, Reneman RS. Regional wall mechanics in the ischemic left ventricle: Numerical modeling and dog experiments. Am J Physiol 1996;270(1):H398–H410.

    PubMed  CAS  Google Scholar 

  4. Bryg RJ, Williams GA, Labovitz AJ. Effect of aging on left-ventricular diastolic filling in normal subjects. Am J Cardiol 1987;59(9):971–974.

    Article  PubMed  CAS  Google Scholar 

  5. Burkhoff D, Maurer MS, Packer M. Heart failure with a normal ejection fraction – Is it really a disorder of diastolic function? Circulation 2003;107(5):656–658.

    Article  PubMed  Google Scholar 

  6. Costa KD, Hunter PJ, Wayne JS, Waldman LK, Guccione JM, McCulloch AD. A three-dimensional finite element method for large elastic deformations of ventricular myocardium. 2. Prolate spheroidal coordinates. J Biomech Eng 1996;118(4):464–472.

    Article  PubMed  CAS  Google Scholar 

  7. Croisille P, Moore CC, Judd RM, Lima JAC, Arai M, McVeigh ER, Becker LC, Zerhouni EA. Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation 1999;99(2):284–291.

    Article  PubMed  CAS  Google Scholar 

  8. Denney TS, McVeigh ER. Model-free reconstruction of three-dimensional myocardial strain from planar tagged MR images. J Magn Reson Imaging 1997;7(5):799–810.

    Article  PubMed  Google Scholar 

  9. Grossman W. Cardiac hypertrophy: Useful adaptation or pathologic process? Am J Med 1980;69:576–584.

    Article  PubMed  CAS  Google Scholar 

  10. Guccione J, Mcculloch A. Finite element modeling of ventricular mechanics. Glass l, Hunter P, McCulloch A, eds. Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. New York: Springer, 1991.

    Google Scholar 

  11. Guccione JM, McCulloch AD, Waldman LK. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 1991;113(1):42–55.

    Article  PubMed  CAS  Google Scholar 

  12. Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB, Pasque MK. Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: A finite element model study. Ann Thorac Surg 2001;71(2):654–662.

    Article  PubMed  CAS  Google Scholar 

  13. Guccione JM, Walker JC, Beitler JR, Moonly SM, Zhang P, Guttman MA, Ozturk C, McVeigh ER, Wallace AW, Saloner DA, Ratcliffe MB. The effect of anteroapical aneurysm plication on end-systolic three-dimensional strain in the sheep: A magnetic resonance imaging tagging study. J Thorac Cardiovasc Surg 2006;131(3):579–586, e3.

    Article  PubMed  Google Scholar 

  14. Guttman MA, Zerhouni EA, McVeigh ER. Analysis and visualization of cardiac function from MR images. IEEE Comp Graph Appl 1997;17(1):30–38.

    Article  Google Scholar 

  15. Huang JT, Abendschein D, Davila-Roman VG, Amini AA. Spatio-temporal tracking of myocardial deformations with a 4-D B-spline model from tagged MRI. IEEE Trans Med Imaging 1999;18(10):957–972.

    Article  PubMed  CAS  Google Scholar 

  16. Huisman RM, Elzinga G, Westerhof N, Sipkema P. Measurement of left ventricular wall stress. Cardiovasc Res 1980;14(3):142–153.

    Article  PubMed  CAS  Google Scholar 

  17. Jan KM. Distribution of myocardial stress and its influence on coronary blood flow. J Biomech 1985;18(11):815–820.

    Article  PubMed  CAS  Google Scholar 

  18. Kerwin WS, Prince JL. Tracking MR tag surfaces using a spatiotemporal filter and interpolator. Int J Imaging Syst Technol 1999;10(2):128–142.

    Article  Google Scholar 

  19. Kramer CM, Rogers WJ, Mankad S, Theobald TM, Pakstis DL. Contractile reserve and contrast uptake pattern by magnetic resonance imaging and functional recovery after reperfused myocardial infarction. J Am Coll Cardiol 2000;36(6):1835–1840.

    Article  PubMed  CAS  Google Scholar 

  20. Markovitz LJ, Savage EB, Ratcliffe MB, Bavaria JE, Kreiner G, Iozzo RV, Hargrove WC III, Bogen DK, Edmunds LH Jr. Large animal model of left ventricular aneurysm. Ann Thorac Surg 1989;48(6):838–845.

    Article  PubMed  CAS  Google Scholar 

  21. McCulloch A, Waldman L, Rogers J, Guccione J. Large-scale finite element analysis of the beating heart. Crit Rev Biomed Eng 1992;20(5–6):427–449.

    PubMed  CAS  Google Scholar 

  22. Moonly SM. Experimental and Computational Analysis of Left Ventricular Aneurysm Mechanics. PhD thesis. San Francisco, CA: University of California, 2003.

    Google Scholar 

  23. Moriarty TF. The law of Laplace: Its limitations as a relation for diastolic pressure, volume, or wall stress of the left ventricle. Circ Res 1980;46:321–331.

    Article  PubMed  CAS  Google Scholar 

  24. Moulton MJ, Creswell LL, Downing SW, Actis RL, Szabo BA, Pasque MK. Myocardial material property determination in the in vivo heart using magnetic resonance imaging. Int J Card Imaging 1996;12(3):153–167.

    Article  PubMed  CAS  Google Scholar 

  25. Moulton MJ, Creswell LL, Downing SW, Actis RL, Szabo BA, Vannier MW, Pasque MK. Spline surface interpolation for calculating 3-D ventricular strains from MRI tissue tagging. Am J Physiol Heart Circ Physiol 1996;270(1):H281–H297.

    CAS  Google Scholar 

  26. Moustakidis P, Maniar HS, Cupps BP, Absi T, Zheng J, Guccione JM, Sundt TM, Pasque MK. Altered left ventricular geometry changes the border zone temporal distribution of stress in an experimental model of left ventricular aneurysm: A finite element model study. Circulation 2002;106(12 Suppl 1):I168–I175.

    PubMed  Google Scholar 

  27. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck E. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI – Comparison with dobutamine stress echocardiography. Circulation 1999;99(6):763–770.

    Article  PubMed  CAS  Google Scholar 

  28. O’Dell WG, Moore, C.C., Hunter, W.C., Zerhouni, E.A., and McVeigh, E.R. Displacement field fitting for calculating 3D myocardial deformations from parallel-tagged MR images. Radiology 1995;270:829–835.

    Google Scholar 

  29. Okamoto RJ, Moulton MJ, Peterson SJ, Li D, Pasque MK, Guccione JM. Epicardial suction: A new approach to mechanical testing of the passive ventricular wall. J Biomech Eng 2000;122(5):479–487.

    Article  PubMed  CAS  Google Scholar 

  30. Omens JH, Mackenna DA, McCulloch AD. Measurement of strain and analysis of stress in resting rat left-ventricular myocardium. J Biomech 1993;26(6):665–676.

    Article  PubMed  CAS  Google Scholar 

  31. Omens JH, May KD, McCulloch AD. Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am J Physiol 1991; 261(3 Pt 2): H918–H928.

    PubMed  CAS  Google Scholar 

  32. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures – A comparative simultaneous Doppler-Catheterization study. Circulation 2000;102(15):1788–1794.

    Article  PubMed  CAS  Google Scholar 

  33. Ozturk C, McVeigh ER. Four-dimensional B-spline based motion analysis of tagged MR images: Introduction and in vivo validation. Phys Med Biol 2000;45(6):1683–1702.

    Article  PubMed  CAS  Google Scholar 

  34. Picano E, Lattanzi F, Orlandini A, Marini C, Labbate A. Stress echocardiography and the human factor – The importance of being expert. J Am Coll Cardiol 1991;17(3):666–669.

    Article  PubMed  CAS  Google Scholar 

  35. Pinamonti B, Dilenarda A, Sinagra G, Camerini F, Alberti E, Lardieri G, Miani D, Morgera T, Perkan A, Salvi A, Giacca M, Mestroni L, Severini G, Falaschi A, Bussani R, Tanganelli P, Silvestri F. Restrictive left-ventricular filling pattern in dilated cardiomyopathy assessed by doppler-echocardiography – Clinical, echocardiographic and hemodynamic correlations and prognostic implications. J Am Coll Cardiol 1993;22(3):808–815.

    Article  PubMed  CAS  Google Scholar 

  36. Pislaru C, Bruce CJ, Anagnostopoulos PC, Allen JL, Seward JB, Pellikka PA, Ritman EL, Greenleaf JF. Ultrasound strain imaging of altered myocardial stiffness – Stunned versus infarcted reperfused myocardium. Circulation 2004;109(23):2905–2910.

    Article  PubMed  Google Scholar 

  37. Sarnoff S, Braunwald E, Welch G, Case R, Stainsby W, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol 1958;192:148–156.

    PubMed  CAS  Google Scholar 

  38. Sun K, Stander N, Jhun C-S, Zhang Z, Suzuki T, Saeed M, Wallace AW, Tseng EE, Baker AJ, Saloner D, Einstein DR, Ratcliffe MB, Guccione JM. A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J Biomech Eng 2009;131(11):111001.

    Article  PubMed  Google Scholar 

  39. Usyk TP, Mazhari R, McCulloch AD. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J Elasticity 2000;61:143–164.

    Article  Google Scholar 

  40. Vanoverschelde JLJ, Raphael DA, Robert AR, Cosyns JR. Left-ventricular filling in dilated cardiomyopathy – Relation to functional class and hemodynamics. J Am Coll Cardiol 1990;15(6):1288–1295.

    Article  PubMed  CAS  Google Scholar 

  41. Vetter FJ, McCulloch AD. Three-dimensional stress and strain in passive rabbit left ventricle: A model study. Ann Biomed Eng 2000;28(7):781–792.

    Article  PubMed  CAS  Google Scholar 

  42. Walker JC, Guccione JM, Jiang Y, Zhang P, Wallace AW, Hsu EW, Ratcliffe MB. Helical myofiber orientation after myocardial infarction and left ventricular surgical restoration in sheep. J Thorac Cardiovasc Surg 2005;129(2):382–390.

    Article  PubMed  Google Scholar 

  43. Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW, Saloner D, Guccione JM. MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 2005;289(2):H692–H700.

    Article  PubMed  CAS  Google Scholar 

  44. Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Hsu EW, Saloner DA, Guccione JM. Magnetic resonance imaging-based finite element stress analysis after linear repair of left ventricular aneurysm. J Thorac Cardiovasc Surg 2008;135(5):1094–1102, 1102, e1–2.

    Article  PubMed  Google Scholar 

  45. Wiegers S, Plappert, T, St John Sutton M. Role of echocardiography in the diagnosis and treatment of cardiomyopathies. Poole-Wilson P et al. eds. Heart Failure: Scientific Principles And Clinical Practice. New York: Churchill Livingstone, 1997.

    Google Scholar 

  46. Yin FCP. Ventricular wall stress. Circ Res 1986;49:829–842.

    Article  Google Scholar 

  47. Young AA, Kraitchman DL, Dougherty L, Axel L. Tracking and finite-element analysis of stripe deformation in magnetic-resonance tagging. IEEE Trans Med Imaging 1995;14(3):413–421.

    Article  PubMed  CAS  Google Scholar 

  48. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human-heart: Tagging with MR imaging – A method for noninvasive assessment of myocardial motion. Radiology 1988;169(1):59–63.

    PubMed  CAS  Google Scholar 

  49. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure – Abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 2004;350(19):1953–1959.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health grants R01 HL077921 and HL086400 (Dr. Guccione).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Wenk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wenk, J.F. et al. (2010). In Vivo Myocardial Material Properties and Stress Distributions in Normal and Failing Human Hearts. In: Kerckhoffs, R. (eds) Patient-Specific Modeling of the Cardiovascular System. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6691-9_8

Download citation

Publish with us

Policies and ethics