Skip to main content

Patient-Specific Modeling of Cardiovascular Dynamics with a Major Role for Adaptation

  • Chapter
  • First Online:
Patient-Specific Modeling of the Cardiovascular System

Abstract

Over the last few decades, technological developments have made diagnostic information of the cardiovascular system far more detailed. These improvements are prominently attributed to the general availability of many imaging techniques, such as ultrasonic echo imaging, computer tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET). After primary diagnosis, treatment starts by following a protocol that is considered best, given the available information. Following the standard route, such protocol is a result of empirical clinical studies, where effects of different treatments are compared statistically in large groups of patients with similar pathology. With increase of diagnostic detail, groups become less uniform, forcing us to make the subgroups smaller and more numerous. Due to the technological improvements, the choice and possible graduation of therapeutic interventions increase too. As a result, with the conventional epidemiological setup of such studies, it will ever be more difficult to reach the level of significance for obtaining better treatment protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arts, T., P. H. M. Bovendeerd, et al. (1991). “Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall.” Biophys J 59: 93–103.

    Article  PubMed  CAS  Google Scholar 

  2. Arts, T., K. D. Costa, et al. (2001). “Relating myocardial laminar architecture to shear strain and muscle fiber orientation.” Am J Physiol 280: H2222–H2229.

    CAS  Google Scholar 

  3. Arts, T., T. Delhaas, et al. (2005). “Adaptation to mechanical load determines shape and properties of heart and circulation, the CircAdapt model.” Am J Physiol Heart Circ Physiol 288: 1943–1954.

    Article  Google Scholar 

  4. Arts, T., F. W. Prinzen, et al. (1994). “Adaptation of cardiac structure by mechanical feedback in the environment of the cell, a model study.” Biophys J 66: 953–961.

    Article  PubMed  CAS  Google Scholar 

  5. Axel, L. and L. Dougherty (1989). “MR imaging of motion with spatial modulation of magnetization.” Radiology 171: 841–845.

    PubMed  CAS  Google Scholar 

  6. Bovendeerd, P. H. M., T. Arts, et al. (1992). “Dependence of left ventricular wall mechanics on myocardial fiber orientation: a model study.” J Biomech 25: 1129–1140.

    Article  PubMed  CAS  Google Scholar 

  7. Brownlee, R. D. and B. L. Langille (1991). “Arterial adaptations to altered blood flow.” Can J Physiol Pharmacol 69(7): 978–983.

    Article  PubMed  CAS  Google Scholar 

  8. Chadwick, R. S. (1982). “Mechanics of the left ventricle.” Biophys J 39: 279–288.

    Article  PubMed  CAS  Google Scholar 

  9. Costa, K. D., Y. Takayama, et al. (1999). “Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium.” Am J Physiol 276(2 Pt 2): H595–H607.

    PubMed  CAS  Google Scholar 

  10. Cupps, B. P., P. Moustakidis, et al. (2003). “Severe aortic insufficiency and normal systolic ­function: determining regional left ventricular wall stress by finite-element analysis.” Ann Thorac Surg 76(3): 668–675; discussion 675.

    Article  PubMed  Google Scholar 

  11. Dawson, T. H. (2001). “Similitude in the cardiovascular system of mammals.” J Exp Biol 204(Pt 3): 395–407.

    PubMed  CAS  Google Scholar 

  12. Devereux, R. B. and M. J. Roman (1999). “Left ventricular hypertrophy in hypertension: stimuli, patterns, and consequences.” Hypertens Res 22(1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  13. Donker, D. W., J. G. Maessen, et al. (2007). “Impact of acute and enduring volume overload on mechanotransduction and cytoskeletal integrity of canine left ventricular myocardium.” Am J Physiol Heart Circ Physiol 292(5): H2324–H2332.

    Article  PubMed  CAS  Google Scholar 

  14. Emery, J. L., J. H. Omens, et al. (1997). “Strain softening in rat left ventricular myocardium.” J Biomech Eng 119(1): 6–12.

    Article  PubMed  CAS  Google Scholar 

  15. Guccione, J. M., K. D. Costa, et al. (1995). “Finite element stress analysis of left ventricular mechanics in the beating dog heart.” J Biomech 28: 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  16. Guccione, J. M., W. G. O’Dell, et al. (1997). “Anterior and posterior left ventricular sarcomere lengths behave similarly during ejection.” Am J Physiol 272: H449–H477.

    Google Scholar 

  17. Guyton, A. C., J. P. Montani, et al. (1988). “Computer models for designing hypertension experiments and studying concepts.” Am J Med Sci 295(4): 320–326.

    Article  PubMed  CAS  Google Scholar 

  18. Hann, C. E., J. G. Chase, et al. (2006). “Integral-based identification of patient specific parameters for a minimal cardiac model.” Comput Methods Programs Biomed 81(2): 181–192.

    Article  PubMed  CAS  Google Scholar 

  19. Holmes, J. W. (2004). “Candidate mechanical stimuli for hypertrophy during volume overload.” J Appl Physiol 97(4): 1453–1460.

    Article  PubMed  Google Scholar 

  20. Kerckhoffs, R. C., A. D. McCulloch, et al. (2008). “Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block.” Med Image Anal 13, 362–369.

    Article  PubMed  Google Scholar 

  21. Kerckhoffs, R. C., M. L. Neal, et al. (2007). “Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation.” Ann Biomed Eng 35(1): 1–18.

    Article  PubMed  Google Scholar 

  22. Kerckhoffs, R. C. P., Omens, J. H., McCulloch, A. D. and Mulligan, L. J. (2010) Ventricular dilation and electrical dyssynchrony synergistically increase regional mechanical nonuniformity but not mechanical dyssynchrony: A computational model.” Circulation: Heart Failure 3, 528–536.

    Article  Google Scholar 

  23. Kim, H. J., I. E. Vignon-Clementel, et al. (2009). “On coupling a lumped parameter heart model and a three-dimensional finite element aorta model.” Ann Biomed Eng 37(11): 2153–2169.

    Article  PubMed  CAS  Google Scholar 

  24. Kroon, W., T. Delhaas, et al. (2009). “Computational analysis of the myocardial structure: adaptation of cardiac myofiber orientations through deformation.” Med Image Anal 13(2): 346–353.

    Article  PubMed  Google Scholar 

  25. Kuijpers, N. H., H. M. Ten Eikelder, et al. (2008). “Mechanoelectric feedback as a trigger mechanism for cardiac electrical remodeling: a model study.” Ann Biomed Eng 36(11): 1816–1835.

    Article  PubMed  Google Scholar 

  26. LeGrice, I. J., B. H. Smaill, et al. (1995). “Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog.” Am J Physiol 269: H571–H582.

    PubMed  CAS  Google Scholar 

  27. Lumens, J., T. Delhaas, et al. (2006). “Impaired subendocardial contractile myofiber function in asymptomatic aged humans, as detected using MRI.” Am J Physiol Heart Circ Physiol 291(4): H1573–H1579.

    Article  PubMed  CAS  Google Scholar 

  28. Lumens, J., T. Delhaas, et al. (2008). “Modeling ventricular interaction: a multiscale approach from sarcomere mechanics to cardiovascular system hemodynamics.” Pac Symp Biocomput 13: 378–389.

    Google Scholar 

  29. Lumens, J., T. Delhaas, et al. (2009). “Three-wall segment (TriSeg) model describing ­mechanics and hemodynamics of ventricular interaction.” Ann Biomed Eng 37(11): 2234–2255.

    Article  PubMed  Google Scholar 

  30. Luo, C. H. and Y. Rudy (1994). “A dynamic model of the cardiac ventricular action potential. II. After depolarizations, triggered activity, and potentiation.” Circ Res 74(6): 1097–1113.

    Article  PubMed  CAS  Google Scholar 

  31. Milhorn, H. T., Jr., R. Benton, et al. (1965). “A mathematical model of the human respiratory control system.” Biophys J 5: 27–46.

    Article  PubMed  Google Scholar 

  32. Nguyen, T. N., A. C. Chagas, et al. (1993). “Left ventricular adaptation to gradual renovascular hypertension in dogs.” Am J Physiol 265(1 Pt 2): H22–H38.

    PubMed  CAS  Google Scholar 

  33. Olansen, J. B., J. W. Clark, et al. (2000). “A closed-loop model of the canine cardiovascular system that includes ventricular interaction.” Comput Biomed Res 33(4): 260–295.

    Article  PubMed  CAS  Google Scholar 

  34. Olivetti, G., J. M. Capasso, et al. (1990). “Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats.” Circ Res 67(1): 23–34.

    Article  PubMed  CAS  Google Scholar 

  35. Omens, J. H. (1998). “Stress and strain as regulators of myocardial growth.” Prog Biophys Mol Biol 69(2–3): 559–572.

    Article  PubMed  CAS  Google Scholar 

  36. Opie, L. H., P. J. Commerford, et al. (2006). “Controversies in ventricular remodelling.” Lancet 367(9507): 356–367.

    Article  PubMed  Google Scholar 

  37. Pennati, G., F. Migliavacca, et al. (1997). “A mathematical model of circulation in the presence of the bidirectional cavopulmonary anastomosis in children with a univentricular heart.” Med Eng Phys 19(3): 223–234.

    Article  PubMed  CAS  Google Scholar 

  38. Rice, J. J., F. Wang, et al. (2008). “Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations.” Biophys J 95(5): 2368–2390.

    Article  PubMed  CAS  Google Scholar 

  39. Rudy, Y. and J. R. Silva (2006). “Computational biology in the study of cardiac ion channels and cell electrophysiology.” Q Rev Biophys 39(1): 57–116.

    Article  PubMed  CAS  Google Scholar 

  40. Sasayama, S., J. Ross, et al. (1976). “Adaptations of the left ventricle to chronic pressure overload.” Circ Res 38: 172–178.

    Article  PubMed  CAS  Google Scholar 

  41. Sermesant, M., P. Moireau, et al. (2006). “Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties.” Med Image Anal 10(4): 642–656.

    Article  PubMed  CAS  Google Scholar 

  42. Streeter, D. D. (1979). Gross morphology and fiber geometry of the heart. In R. M. Berne, editor. The cardiovascular system, the heart, vol. 1. Bethesda, Maryland, USA, Am Physiol Soc: 61–112.

    Google Scholar 

  43. Sun, Y., M. Beshara, et al. (1997). “A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex.” Am J Physiol 272(3 Pt 2): H1499–H1515.

    PubMed  CAS  Google Scholar 

  44. Ten Tusscher, K. H., O. Bernus, et al. (2006). “Comparison of electrophysiological models for human ventricular cells and tissues.” Prog Biophys Mol Biol 90(1–3): 326–345.

    Article  PubMed  Google Scholar 

  45. Ten Tusscher, K. H. and A. V. Panfilov (2006). “Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions.” Phys Med Biol 51(23): 6141–6156.

    Article  PubMed  Google Scholar 

  46. Thomas, J. D., J. Zhou, et al. (1997). “Physical and physiological determinants of pulmonary venous flow: numerical analysis.” Am J Physiol 272(5 Pt 2): H2453–H2465.

    PubMed  CAS  Google Scholar 

  47. Tseng, W. Y., T. G. Reese, et al. (1999). “Cardiac diffusion tensor MRI in vivo without strain correction.” Magn Reson Med 42(2): 393–403.

    Article  PubMed  CAS  Google Scholar 

  48. Van der Toorn, A., P. Barenbrug, et al. (2002). “Transmural gradients of cardiac myofiber shortening in aortic valve stenosis patients using MRI-tagging.” Am J Physiol 283: H1609–H1615.

    Google Scholar 

  49. Van Steenhoven, A. A. and M. E. H. Van Dongen (1979). “Model studies of the closing behavior of the aortic valve.” J Fluid Mech 90: 21–32.

    Article  Google Scholar 

  50. Wang, V. Y., H. I. Lam, et al. (2009). “Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function.” Med Image Anal 13(5): 773–784.

    Article  PubMed  Google Scholar 

  51. Womersley, J. R. (1957). “Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission.” Phys Med Biol 2(2): 178–187.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo Arts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arts, T., Lumens, J., Kroon, W., Donker, D., Prinzen, F., Delhaas, T. (2010). Patient-Specific Modeling of Cardiovascular Dynamics with a Major Role for Adaptation. In: Kerckhoffs, R. (eds) Patient-Specific Modeling of the Cardiovascular System. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6691-9_2

Download citation

Publish with us

Policies and ethics