Skip to main content

Functions of Linear Ubiquitin Chains in the NF-κB Pathway

Linear Polyubiquitin in NF-κB Signaling

  • Chapter
Conjugation and Deconjugation of Ubiquitin Family Modifiers

Part of the book series: Subcellular Biochemistry ((SCBI,volume 54))

Abstract

The ubiquitin conjugation system regulates a wide variety of biological phenomena, in most cases, by modulating protein function via polyubiquitin conjugation. Several types of polyubiquitin chains exist in cells and the type of chain conjugated to a protein seems to determine how the protein is regulated. The polyubiquitin chains that have been reported thus far are generated by conjugation via Lys residues of ubiquitin. We have identified a novel linear polyubiquitin chain, in which the C-terminal Gly of one ubiquitin is conjugated to the α-amino group of the N-terminal Met of another ubiquitin and the ubiquitin ligase complex mediating these reactions specifically generates linear chains. We have shown that linear polyubiquitination is involved in activation of the canonical NF-κB pathway. The regulatory roles of Lys63-linked ubiquitin chains in the NF-κB path way have been extensively studied. In this chapter, we will discuss the distinct roles of linear and K63-linked ubiquitin chains in TNF-α mediated NF-κB activation and the future directions for linear ubiquitin chain research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373–428.

    CAS  PubMed  Google Scholar 

  2. Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 2003; 19:141–72.

    Article  CAS  PubMed  Google Scholar 

  3. Chau V, Tobias JW, Bachmair A et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 1989; 243:1576–83.

    Article  CAS  PubMed  Google Scholar 

  4. Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006; 22:159–80.

    Article  CAS  PubMed  Google Scholar 

  5. Peng J, Schwartz D, Elias JE et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21:921–6.

    Article  CAS  PubMed  Google Scholar 

  6. Jin L, Williamson A, Banerjee S et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008; 133:653–65.

    Article  CAS  PubMed  Google Scholar 

  7. Kirisako T, Kamei K, Murata S et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006; 25:4877–87.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Pickart CM. A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine 48 of ubiquitin. J Biol Chem 1990; 265:21835–42.

    CAS  PubMed  Google Scholar 

  9. Iwai K, Tokunaga F. Linear polyubiquitination: a new regulator of NF-κB activation. EMBO Rep 2009; 10:706–13.

    Article  CAS  PubMed  Google Scholar 

  10. Hofmann RM, Pickart CM. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1999; 96:645–53.

    Article  CAS  PubMed  Google Scholar 

  11. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell 2008; 132:344–62.

    Article  CAS  PubMed  Google Scholar 

  12. Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE 2006; re13.

    Google Scholar 

  13. Tokunaga F, Sakata S, Saeki Y et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol 2009; 11:123–32.

    Article  CAS  PubMed  Google Scholar 

  14. Lo YC, Lin SC, Rospigliosi CC et al. Structural basis for recognition of diubiquitins by NEMO. Mol Cell 2009; 33:602–15.

    Article  CAS  PubMed  Google Scholar 

  15. Rahighi S, Ikeda F, Kawasaki M et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 2009; 136:1098–109.

    Article  CAS  Google Scholar 

  16. Dai YS, Liang MG, Gellis SE et al. Characteristics of mycobacterial infection in patients with immunodeficiency and nuclear factor-κB essential modulator mutation, with or without ectodermal dysplasia. J Am Acad Dermatol 2004; 51:718–22.

    Article  PubMed  Google Scholar 

  17. Filipe-Santos O, Bustamante J, Haverkamp MH et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med 2006; 203:1745–59.

    Article  CAS  PubMed  Google Scholar 

  18. Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009; 33:275–86.

    Article  CAS  PubMed  Google Scholar 

  19. Ea CK, Deng L, Xia ZP et al. Activation of IKK by TNFa requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006; 22:245–57.

    Article  CAS  PubMed  Google Scholar 

  20. Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 2008; 9:536–42.

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto M, Okamoto T, Takeda K et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 2006; 7:962–70.

    Article  CAS  PubMed  Google Scholar 

  22. Rape M. Ubiquitin, infinitely seductive: symposium on the many faces of ubiquitin. EMBO Rep 2009; 10:558–62.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto M, Sato S, Saitoh T et al. Cutting Edge: Pivotal function of Ubc13 in thymocyte TCR signaling. J Immunol 2006; 177:7520–4.

    CAS  PubMed  Google Scholar 

  24. Finley D, Ozkaynak E, Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell 1987; 48:1035–46.

    Article  CAS  PubMed  Google Scholar 

  25. Turner GC, Varshavsky A. Detecting and measuring cotranslational protein degradation in vivo. Science 2000; 289:2117–20.

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura M, Tokunaga F, Sakata S, Iwai K. Mutual regulation of conventional protein kinase C and a ubiquitin ligase complex. Biochem Biophys Res Commun 2006; 351:340–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Iwai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Iwai, K. (2010). Functions of Linear Ubiquitin Chains in the NF-κB Pathway. In: Groettrup, M. (eds) Conjugation and Deconjugation of Ubiquitin Family Modifiers. Subcellular Biochemistry, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6676-6_8

Download citation

Publish with us

Policies and ethics