Skip to main content

Pillared Clay-Supported Noble Metal and Metal Oxide Catalysts for Complete Oxidation of VOCs

  • Chapter
  • First Online:
Pillared Clays and Related Catalysts

Abstract

Pillared clays (PILCs) have porous structure, high surface area, special surface acidity, and thermal stability. Due to their properties, PILCs are very suitable to be used as support for active catalytic phases in the preparation of supported catalysts, and the resulting solids can be applied in several reactions, particularly in environmental-friendly reactions. Volatile organic compounds (VOCs) have contributed significantly to air pollution. The deep catalytic oxidation of these pollutants has been identified as one of the most efficient ways to destroy VOCs. This review examines recent developments in the complete oxidation of VOCs over PILC-supported noble metal and metal oxide catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spivey JJ (1987) Complete catalytic oxidation of volatile organics. Ind Eng Chem Res 26:2165

    Article  CAS  Google Scholar 

  2. Armor JN (1991) New catalytic technology commercialized in the USA during the 1980’s. Appl Catal 78:141

    Article  CAS  Google Scholar 

  3. Spivey JJ, Butt JB (1991) Literature review: deactivation of catalysts in the oxidation of volatile organic compounds. Catal Today 11:465

    Article  Google Scholar 

  4. Dégé P, Pinard L, Magnoux P, Guisnet M (2000) Catalytic oxidation of volatile organic compounds: II. Influence of the physicochemical characteristics of Pd/HFAU catalysts on the oxidation of o-xylene. Appl Catal B 27:17

    Article  Google Scholar 

  5. Wu JC-S, Lin Z-A, Pan J-W, Rei M-H (2001) A novel boron nitride supported Pt catalyst for VOC incineration. Appl Catal A 219:117

    Article  CAS  Google Scholar 

  6. Carpentier J, Lamonier J-F, Siffert S, Zhilinskaya EA, Aboukaïs A (2001) Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene. Appl Catal A 234:91

    Google Scholar 

  7. Kim SC (2002) The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. J Hazard Mater B 91:285

    Article  CAS  Google Scholar 

  8. Prasad R, Kennedy LA, Ruckenstein E (1984) Catalytic combustion. Catal Rev Sci Eng 26:1

    Article  CAS  Google Scholar 

  9. Łojewska J, Kołodziej A, Żak J, Stoch J (2005) Pd/Pt promoted Co3O4 catalysts for VOCs combustion: preparation of active catalyst on metallic carrier. Catal Today 105:655

    Article  Google Scholar 

  10. Chen M, Zheng X-M (2004) The effect of K and Al over NiCo2O4 catalyst on its character and catalytic oxidation of VOCs. J Mol Catal A 221:77

    Article  CAS  Google Scholar 

  11. López-Fonseca R, Gutiérrez-Ortiz JI, Gutiérrez-Ortiz MA, González-Velasco JR (2002) Catalytic combustion of chlorinated ethylenes over H-zeolites. J Chem Technol Biotechnol 78:15

    Article  Google Scholar 

  12. Okumura K, Kobayashi T, Tanaka H, Niwa M (2003) Toluene combustion over palladium supported on various metal oxide supports. Appl Catal B 44:325

    Article  CAS  Google Scholar 

  13. Dong G, Wang J, Bao Y, Chen S (1999) A novel catalyst for CO oxidation at low temperature. Catal Lett 58:37

    Article  CAS  Google Scholar 

  14. Kapoor MP, Ichihashi Y, Shen W, Matsumura Y (2001) Catalytic activity of palladium supported on mesoporous zirconium oxide in low-temperature methanol decomposition. Catal Lett 76:139

    Article  CAS  Google Scholar 

  15. Lin W, Lin L, Zhu Y, Xie Y, Scheurell K, Kemnitz E (2005) Novel Pd/TiO2-ZrO2 catalysts for methane total oxidation at low temperature and their 18O-isotope exchange behavior. J Mol Catal A 226:263

    Article  CAS  Google Scholar 

  16. Gil A, Vicente MA, Gandía LM (2000) Main factors controlling the texture of zirconia and alumina pillared clays. Micropor Mesopor Mater 34:115

    Article  CAS  Google Scholar 

  17. Narui K, Yata H, Furuta K, Nishida A, Kohtoku Y, Matsuzaki T (1999) Effects of addition of Pt to PdO/Al2O3 catalyst on catalytic activity for methane combustion and TEM observations of supported particles. Appl Catal A 179:165

    Article  CAS  Google Scholar 

  18. Gandía LM, Vicente MA, Gil A (2000) Preparation and characterization of manganese oxide catalysts supported on alumina and zirconia-pillared clays. Appl Catal A 196:28

    Google Scholar 

  19. Gil A, Vicente MA, Lambert J-F, Gandía LM (2001) Platinum catalysts supported on Al-pillared clays: application to the catalytic combustion of acetone and methyl-ethyl-ketone. Catal Today 68:41

    Article  CAS  Google Scholar 

  20. Yang L, Shi C, He X, Cai J (2002) Catalytic combustion of methane over PdO supported on Mg-modified alumina. Appl Catal B 38:117

    Article  CAS  Google Scholar 

  21. Gil A, Vicente MA, Korili SA (2006) Effect of the nature and structure of pillared clays in the catalytic behaviour of supported manganese oxide. Catal Today 112:117

    Article  CAS  Google Scholar 

  22. Marín-Astorga N, Alvez-Manoli G, Reyes P (2005) Stereoselective hydrogenation of phenyl alkyl acetylenes on pillared clays supported palladium catalysts. J Mol Catal A 226:81

    Article  Google Scholar 

  23. Jennings MS, Krohn NE, Berry RS, Palazzolo MA, Parks RM, Fidler KK (1985) Catalytic incineration for control of VOC emissions. Noyes Publications, Park Ridge, NJ American Institute of Chemical Engineers, New York, NY

    Google Scholar 

  24. Mukhopadhyay N, Moretti EC (1993) Current and potential future industrial practices for reducing and controlling volatile organic compounds, center for waste reduction technologies. American Institute of Chemical Engineers, New York, NY

    Google Scholar 

  25. Spivey JJ (1989) Catalysis, vol 8. The Royal Society of Chemistry, Cambridge, UK, p 157

    Book  Google Scholar 

  26. Zwinkels MFM, Järås SG, Menon PG, Griffin TA (1993) Catalytic materials for high-temperature combustion. Catal Rev 35:319

    Article  CAS  Google Scholar 

  27. Zuo S-F, Zhou R-X (2006) Al-pillared clays supported rare earths and palladium catalysts for deep oxidation of low concentration of benzene. Appl Surf Sci 253:2508

    Article  CAS  Google Scholar 

  28. Zuo S-F, Zhou R-X (2008) Influence of synthesis condition on pore structure of Al pillared clays and supported Pd catalysts for deep oxidation of benzene. Micropor Mesopor Mater 113:472

    Article  CAS  Google Scholar 

  29. Gandía LM, Vicente MA, Gil A (2000) Preparation and characterization of manganese oxide catalysts supported on alumina and zirconia-pillared clays. Appl Catal A 196:281

    Article  Google Scholar 

  30. Tettenhorst R (1962) Cation migration in montmorillonites. Am Mineral 47:769

    CAS  Google Scholar 

  31. Hutson ND, Gualdoni DJ, Yang RT (1998) Synthesis and characterization of the microporosity of ion-exchanged Al2O3-pillared clays. Chem Mater 10:3707

    Article  CAS  Google Scholar 

  32. Wu X, Xu L. Weng D (2004) The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al2O3 automotive catalysts. Appl Surf Sci 221:375

    Article  CAS  Google Scholar 

  33. Descorme C, Taha R, Mouaddib-Moral N, Duprez D (2002) Oxygen storage capacity measurements of three-way catalysts under transient conditions. Appl Catal A 223:287

    Article  CAS  Google Scholar 

  34. Li J-J, Jiang Z, Hao Z-P, Xu X-Y, Zhuang Y-H (2005) Pillared laponite clays-supported palladium catalysts for the complete oxidation of benzene. J Mol Catal A 225:173

    Article  CAS  Google Scholar 

  35. Chen M, Qi L-Y, Fan L-P, Zhou R-X, Zheng X-M (2008) Polyamiline/Li0.25Ni0.5LaxFe2.25-xO4 nanocomposites: preparation and tailoring the magnetic property. Mater Lett 62:3646

    Article  CAS  Google Scholar 

  36. Oliveira LCA, Lago RM, Fabris JD, Sapag K (2008) Catalytic oxidation of aromatic VOCs with Cr or Pd-impregnated Al-pillared bentonite: byproduct formation and deactivation studies. Appl Clay Sci 39:218

    Article  CAS  Google Scholar 

  37. Pina MP, Irusta S, Menéndez M, Santamaría J, Hughes R, Boag N (1997) Combustion of volatile organic compounds over platinum-based catalytic membranes. Ind Eng Chem Res 36:4557

    Article  CAS  Google Scholar 

  38. Occelli ML (1986) New routes to the preparation of pillared montmorillonite catalysts. J Mol Catal 35:377

    Article  CAS  Google Scholar 

  39. Bradley SM, Kydd RA (1991) A comparison of the thermal stabilities Ga13, GaAl12 and Al13-pillared clay minerals. Catal Lett 8:185

    Article  CAS  Google Scholar 

  40. Tang X, Shu WQ, Shen YF, Suib SL (1995) Preparation and characterization of pillared gallium aluminum clays with enriched pillars. Chem Mater 7:102

    Article  CAS  Google Scholar 

  41. Hernando M.J, Pesquera C, Blanco C, Benito I, González F (1996) Differences in structural, textural, and catalytic properties of montmorillonite pillared with (GaAl12) and (AlAl12) polyoxycations. Chem Mater 8:76

    Article  CAS  Google Scholar 

  42. Sterte J (1991) Preparation and properties of large-pore La-Al-pillared montmorillonite. Clays Clay Miner 39:167

    Article  CAS  Google Scholar 

  43. McCauley JR (1988) Stable intercalated clays and preparation method. US Patent 4,818,737

    Google Scholar 

  44. Zuo S-F, Huang Q-Q, Zhou R-X Synthesis and characterization of Al and Al/REE pillared clays and supported Pd catalysts for benzene oxidation. Unpublished results

    Google Scholar 

  45. Zuo S-F, Huang Q-Q, Zhou R-X (2008) Al/Ce pillared clays with high surface area and large pore: synthesis, characterization and supported palladium catalysts for deep oxidation of benzene. Catal Today 139:88

    Article  CAS  Google Scholar 

  46. Rotter H, Landau MV, Carrera M, Goldfarb D, Herskowitz M (2004) High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. Appl Catal B 47:111

    Article  CAS  Google Scholar 

  47. Mazzocchia C, Kaddouri A (2003) On the activity of copper chromite catalysts in ethyl acetate combustion in the presence and absence of oxygen. J Mol Catal A 204–205:647

    Google Scholar 

  48. López-Fonseca R, Elizundia U, Landa I, Gutiérrez-Ortiz MA, González-Velasco JR (2005) Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates. Appl Catal B 61:150

    Article  Google Scholar 

  49. Döbber D, Kiebling D, Schmitz W, Wendt G (2004) MnOx/ZrO2 catalysts for the total oxidation of methane and chloromethane. Appl Catal B 52:135

    Article  Google Scholar 

  50. Tang X, Xu Y, Shen W (2008) Promoting effect of copper on the catalytic activity of MnOx-CeO2 mixed oxide for complete oxidation of benzene. Chem Eng J 144:175

    Article  CAS  Google Scholar 

  51. Dictor R, Roberts S (1989) Influence of ceria on alumina-supported rhodium: observations of rhodium morphology made using FTIR spectroscopy. J Phys Chem B 93:5846

    Article  CAS  Google Scholar 

  52. Martinez-Arias A, Fernández-García M, Salamanca LN, Valenzuela RX, Conesa JC, Soria J (2000) Structural and redox properties of ceria in alumina-supported ceria catalyst supports. J Phys Chem B 104:4038

    Article  CAS  Google Scholar 

  53. Trovarelli A, Boaro M, Rocchini E, De Leitenburg C, Dolcetti G (2001) Some recent developments in the characterization of ceria-based catalysts. J Alloys Compd 323:584

    Article  Google Scholar 

  54. Li J-J, Mu Z, Xu X-Y, Tian H, Duan M-H, Li L-D, Hao Z-P, Qiao S-Z, Lu G-Q (2008) A new and generic preparation method of mesoporous clay composites containing dispersed metal oxide nanopartilces. Micropor Mesopor Mater 114:214

    Article  CAS  Google Scholar 

  55. Li J-J, Xu X-Y, Jiang Z, Hao Z-P, Hu C (2005) Nanoporous silica-supported nanometric palladium: synthesis, characterization, and catalytic deep oxidation of benzene. Environ Sci Technol 39:1319

    Article  CAS  Google Scholar 

  56. Somorjai GA, BorodkoYG (2001) Research in nanosciences – great opportunity for catalysis science. Catal Lett 76:1

    Article  CAS  Google Scholar 

  57. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts. Chem Rev 102:3757

    Article  CAS  Google Scholar 

  58. Henry CR (2000) Catalytic activity of supported nanometer-sized metal clusters. Appl Surf Sci 164:252

    Article  CAS  Google Scholar 

  59. Kapteijn F, Dick van Langeveld A, Moulijn JA, Andreïni A, Vuurman MA, Turek AM, Jehng J-M, Wachs IE (1994) Alumina-supported manganese oxide catalysts: I. Characterization: effect of precursor and loading. J Catal 150:94

    Article  CAS  Google Scholar 

  60. Kapteijn F, Singoredjo L, Andreïni A, Moulijn JA (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B 3:173

    Google Scholar 

  61. Boot LA, Kerkhoffs MHJVB, van der Linden Th, Jos van Dillen A, Geus JW, van Buren FR (1996) Preparation, characterization and catalytic testing of cobalt oxide and manganese oxide catalysts supported on zirconia. Appl Catal A 137:69

    Article  CAS  Google Scholar 

  62. de Leitenburg C, Goi D, Primavera A, Trovarelli A, Dolcetti G. (1996) Wet oxidation of acetic acid catalyzed by doped ceria. Appl Catal B 11:L29

    Article  Google Scholar 

  63. Zuo S-F, Huang Q-Q Zhou R-X (2009) Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation, Appl Catal B 91:204

    Google Scholar 

  64. Huang Q-Q, Zuo S-F, Zhou R-X (2010) Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs, Appl Catal B 95:327

    Google Scholar 

  65. Gandía LM, Vicente MA, Gil A (2002) Complete oxidation of acetone over manganese oxide catalysts supported on alumina- and zirconia-pillared clays. Appl Catal B 38:295

    Article  Google Scholar 

  66. Storaro L, Ganzerla R, Lenarda M, Zanoni R, Antonio J, López J, Olivera-Pastor P, Castellón ER (1997) Catalytic behavior of chromia and chromium-doped alumina pillared materials for the vapor phase deep oxidation of chlorinated hydrocarbons. J Mol Catal A 115:329

    Article  CAS  Google Scholar 

  67. Gil A, Vicente MA, Toranzo R, Bañares MA, Gandía LM (1998) Preparation, characterization and catalytic activity in the deep oxidation of acetone of Cr, Al-pillared saponites. J Chem Technol Biotechnol 72:131

    Article  CAS  Google Scholar 

  68. Mata G, Trujillano R, Vicente MA, Belver C, Fernández-García M, Korili SA, Gil A (2007) Chromium-saponite clay catalysts: preparation, characterization and catalytic performance in propene oxidation. Appl Catal A 327:1

    Article  CAS  Google Scholar 

  69. Carriazo JG, Centeno MA, Odriozola JA, Moreno S, Molina R (2007) Effect of Fe and Ce on Al-pillared bentonite and their performance in catalytic oxidation reactions. Appl Catal A 317:120

    Article  CAS  Google Scholar 

  70. Carriazo JG, Guélou E, Barrault, J, Tatibouët J-M, Molina R, Moreno S (2005) Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity. Catal Today 107–108:126

    Article  Google Scholar 

  71. Catrinescu C, Teodosiu C, Macoveanu M, Miehe-Brendlé J, Le Dred R (2003) Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res 37:1154

    Article  CAS  Google Scholar 

  72. Chirchi L, Ghorbel A (2002) Use of various Fe-modified montmorillonite samples for 4-nitrophenol degradation by H2O2. Appl Clay Sci 21:271

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial supports from the Ministry of Science and Technology of China (no. 2004 CB 719504) and Nature Science Foundation of China (no. 20577043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renxian Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zuo, S., Huang, Q., Zhou, R. (2010). Pillared Clay-Supported Noble Metal and Metal Oxide Catalysts for Complete Oxidation of VOCs. In: Gil, A., Korili, S., Trujillano, R., Vicente, M. (eds) Pillared Clays and Related Catalysts. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6670-4_9

Download citation

Publish with us

Policies and ethics