Skip to main content

Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes

  • Chapter
  • First Online:
Pillared Clays and Related Catalysts

Abstract

Clays, both natural and physical-chemically modified, are attractive materials for the preparation of supported catalysts. In this chapter, a review is made regarding the use of pillared interlayered clays (PILCs) in heterogeneous Fenton-like advanced oxidation processes. Their applications in pollutants degradation is summarized, with particular emphasis on the effect of the main operating conditions (e.g., initial H2O2 or parent compound concentration, catalyst load, pH, or temperature) on oxidation efficiency. Special attention is also given to the type of catalyst or precursor used, to the importance and advantages of the heterogeneous versus homogeneous process, and to significant aspects like catalyst stability. Among the technological issues that are of concern, the importance of using continuous flow reactors (e.g., fixed-bed) is discussed. Finally, some mechanistic studies are reviewed as well as modeling works, based on phenomenological or semi-empiric models (e.g., using statistic tools like design of experiments).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carriazo J, Guelou E, Barrault J, Tatibouët JM, Molina R, Moreno S (2005) Synthesis of pillared clays containing Al, Al–Fe or Al–Ce–Fe from a bentonite: characterization and catalytic activity. Catal Today 107–108:126–132

    Article  Google Scholar 

  2. Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256

    Article  CAS  Google Scholar 

  3. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  4. Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37:1−15

    Article  Google Scholar 

  5. Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588−606

    Article  Google Scholar 

  6. Sum OSN, Feng J, Hu X, Yue PL (2005) Photo-assisted Fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst. Top Catal 33:233–242

    Article  CAS  Google Scholar 

  7. Najjar W, Azabou S, Sayadi S, Ghorbel A (2007) Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants. Part I. Reactivity of tyrosol over (Al–Fe)PILC. Appl Catal B Environ 74:11–18

    Article  CAS  Google Scholar 

  8. Sabhi S, Kiwi, J (2001) Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water Res 35:1994–2002

    Article  CAS  Google Scholar 

  9. Feng J, Hu X, Yue PL, Zhu HY, Lu GQ (2003) A novel laponite clay-based Fe nanocomposite and its photo-catalytic activity in photo-assisted degradation of Orange II. Chem Eng Sci 58:679–685

    Article  CAS  Google Scholar 

  10. Gemeay AH, Mansour IA, El-Sharkawy RG, Zaki AB (2003) Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine. J Mol Catal A: Chem 193:109–120

    Article  CAS  Google Scholar 

  11. Ishtchenko VV, Huddersman KD, Vitkovskaya RF (2003) Part 1. Production of a modified PAN fibrous catalyst and its optimization towards the decomposition of hydrogen peroxide. Appl Catal A: Gen 242:123–137

    Article  CAS  Google Scholar 

  12. Letaief S, Casal B, Aranda P, Martín-Luengo MA, Ruiz-Hitzky E (2003) Fe-containing pillared clays as catalysts for phenol hydroxylation. Appl Clay Sci 22:263–277

    Article  CAS  Google Scholar 

  13. Tachiev G, Roth JA, Bowers AR (2000) Kinetics of hydrogen peroxide decomposition with complexed and free iron catalysts. Int J Chem Kinet 32:24–35

    Article  CAS  Google Scholar 

  14. Neamtu M, Zaharia C, Catrinescu C, Yediler A, Macoveanu M, Kettrup A (2004) Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye Procion Marine H-EXL. Appl Catal B: Environ 48:287–294

    Article  CAS  Google Scholar 

  15. Dantas TLP, Mendonça VP, Jose HJ, Rodrigues AE, Moreira RFPM (2006) Treatment of textile wastewater by heterogeneous Fenton process using a new composite Fe2O3/carbon. Chem Eng J 118:77–82

    Article  CAS  Google Scholar 

  16. Sum OSN, Feng J, Hu X, Yue PL (2004) Pillared laponite clay-based Fe nanocomposites as heterogeneous catalysts for photo-Fenton degradation of acid black 1. Chem Eng Sci 59:5269–5275

    Article  CAS  Google Scholar 

  17. Bobu M, Yediler A, Siminiceanu I, Schulte-Hostede S (2008) Degradation studies of ciprofloxacin on a pillared iron catalyst. Appl Catal B: Environ 83:15–23

    Article  CAS  Google Scholar 

  18. Gil A, Gandía LM, Vicente MA (2000) Recent advances in the synthesis and catalytic applications of pillared clays. Catal Rev Sci Eng 42:145–212

    Article  CAS  Google Scholar 

  19. Vicente MA, Bañares-Muñoz MA, Gandía LM, Gil A (2001) On the structural changes of a saponite intercalated with various polycations upon thermal treatments. Appl Catal A: Gen 217:191–204

    Article  CAS  Google Scholar 

  20. Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14:161–198

    Article  CAS  Google Scholar 

  21. Centi G, Perathoner S (2008) Catalysis by layered materials: a review. Micropor Mesopor Mater 107:3–15

    Article  CAS  Google Scholar 

  22. Gil A, Korili SA, Vicente MA (2008) Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catal Rev Sci Eng 50:153–221

    Article  CAS  Google Scholar 

  23. De León MA, Castiglioni J, Bussi J, Sergio M (2008) Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process. Catal Today 133:600–605

    Article  Google Scholar 

  24. Iurascu B, Siminiceanu I, Vione D, Vicente MA, Gil A (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43:1313–1322

    Article  CAS  Google Scholar 

  25. Ramirez JH, Costa CA, Madeira LM, Mata G, Vicente MA, Rojas-Cervantes ML, Lopez-Peinado AJ, Martin-Aranda RM (2007) Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Appl Catal B: Environ 71:44–56

    Article  CAS  Google Scholar 

  26. Ramirez JH, Lampinen M, Vicente MA, Costa CA, Madeira LM (2008) Experimental design to optimize the oxidation of Orange II dye solution using a clay-based Fenton-like catalyst. Ind Eng Chem Res 47:284–294

    Article  Google Scholar 

  27. Chen Q, Wu P, Li Y, Zhu N, Dang Z (2009) Heterogeneous photo-Fenton photodegradation of Reactive Brilliant Orange X-GN over iron-pillared montmorillonite under visible irradiation. J Hazard Mater 168:901–908

    Article  CAS  Google Scholar 

  28. Carneiro PA, Pupo Nogueira RF, Zanoni MVB (2007) Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dyes Pigm 74:127–132

    Article  Google Scholar 

  29. Yip ACK, Lam FLY, Hu X (2005) Chemical-vapor-deposited copper on acid-activated bentonite clay as an applicable heterogeneous catalyst for the photo-Fenton-like oxidation of textile organic pollutants. Ind Eng Chem Res 44:7983–7990

    Article  CAS  Google Scholar 

  30. Tabet D, Saidi M, Houari M, Pichat P, Khalaf H (2006) Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation. J Environ Manage 80:342–346

    Article  CAS  Google Scholar 

  31. Centi G, Cimino G, Grasso G, Perathoner S, Romeo G, Toscano VG (2001) Catalytic wet H2O2 oxidation of olive oil mills wastewater: development of a Fe/ZSM-5 catalyst system, CPS, Chemeng/0011003. http://www.Chemweb.com. Accessed 10 October 2009

  32. Tatibouët JM, Guelou E, Fournier J (2005) Catalytic oxidation of phenol by hydrogen peroxide over a pillared clay containing iron. Active species and pH effect. Top Catal 33:225–232

    Article  Google Scholar 

  33. Guélou E, Barrault J, Fournier J, Tatibouët JM (2003) Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Appl Catal B Environ 44:1–8

    Article  Google Scholar 

  34. Barrault J, Abdellaoui M, Bouchoule C, Majesté A, Tatibouët JM, Louloudi A, Papayannakos N, Gangas NH (2000) Catalytic wet peroxide oxidation over mixed (Al–Fe) pillared clays. Appl Catal B Environ 27:225–230

    Article  Google Scholar 

  35. Guo J, Al-Dahhan M (2003) Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind Eng Chem Res 42:2450–2460

    Article  CAS  Google Scholar 

  36. Catrinescu C, Teodosiu C, Macoveanu M, Brendle JM, Le Dred R (2003) Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res 37:1154–1160

    Article  CAS  Google Scholar 

  37. Chirchi L, Ghorbel A (2002) Use of various Fe-modified montmorillonite samples for 4-nitrophenol degradation by H2O2. Appl Clay Sci 21:271–276

    Article  CAS  Google Scholar 

  38. Catrinescu C, Neamtu M, Brendlé JM, Garcia MG, Kettrup A (2006) Catalytic wet peroxide oxidation of reactive azo dyes over iron-containing pillared beidellite catalyst. In: Suárez M, Vicente MA, Rives V, Sánchez MJ (eds) Materiales Arcillosos: de la Geología a las Nuevas Aplicaciones, Salamanca, pp 87–98. Sociedad Española de Arcillas, ISBN: 84-689-6471-9

    Google Scholar 

  39. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910

    Article  CAS  Google Scholar 

  40. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond 147:332–351

    Article  CAS  Google Scholar 

  41. Lücking F, Köser H, Jank M, Ritter A (1998) Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Res 32:2607–2614

    Article  Google Scholar 

  42. Safarzadeh-Amiri A, Bolten JR, Cater SR (1996) The use of iron in advanced oxidation processes. J Adv Oxid Technol 1:18–26

    CAS  Google Scholar 

  43. Bigda RJ (1995) Consider Fenton chemistry for wastewater treatment. Chem Eng Proc 91:62–66

    CAS  Google Scholar 

  44. Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  45. Kitis M, Adams CD, Daigger GT (1999) The effects of Fenton’s reagent pretreatment on the biodegradability of non-ionic surfactants. Water Res 33:2561–2568

    Article  CAS  Google Scholar 

  46. Yoon J, Lee Y, Kim S (2001) Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Sci Technol 44:15–21

    CAS  Google Scholar 

  47. Lu MC, Lin CJ, Liao CH, Ting WP, Huang RY (2001) Influence of pH on the dewatering of activated sludge by Fenton’s reagent. Water Sci Technol 44:327–332

    CAS  Google Scholar 

  48. Walling C, Goosen A (1973) Mechanism of the ferric ion catalysed decomposition of hydrogen peroxide: effects of organic substrate. J Am Chem Soc 95:2987–2991

    Article  CAS  Google Scholar 

  49. De Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solutions: mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732

    Article  Google Scholar 

  50. Gallard H, De Laat J (2000) Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Res 34:3107–3116

    Article  CAS  Google Scholar 

  51. Walling C, Kato S (1971) The oxidation of alcohols by Fenton’s reagent: the effect of copper ion. J Am Chem Soc 93:4275–4281

    Article  CAS  Google Scholar 

  52. Lin SH, Lo CC (1997) Fenton process for treatment of desizing wastewater. Water Res 31:2050–2056

    Article  CAS  Google Scholar 

  53. Luo M, Bowden D, Brimblecombe P (2009) Catalytic property of Fe–Al pillared clay for Fenton oxidation of phenol by H2O2. Appl Cat B Environ 85:201–206

    Article  CAS  Google Scholar 

  54. Sanabria N, Alvarez A, Molina R, Moreno S (2008) Synthesis of pillared bentonite starting from the Al–Fe polymeric precursor in solid state, and its catalytic evaluation in the phenol oxidation reaction. Catal Today 133–135:530–533

    Article  Google Scholar 

  55. Pignatello J (1992) Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol 26:944–951

    Article  CAS  Google Scholar 

  56. Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ (2006) Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl Catal B Environ 65:261–268

    Article  CAS  Google Scholar 

  57. Molina R, Martínez F, Melero JA, Bremner DH, Chakinala AG (2006) Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: multivariate study by factorial design of experiments. Appl Catal B Environ 66:198–207

    Article  CAS  Google Scholar 

  58. De Laat J, Le TG (2006) Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Appl Catal B Environ 66:137–146

    Article  Google Scholar 

  59. Pintar A, Levec J (1992) Catalytic oxidation of organics in aqueous solutions: kinetics of phenol oxidation. J Catal 135:345–357

    Article  CAS  Google Scholar 

  60. Fajerwerg K, Debellefontaine H (1996) Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst. Appl Catal B: Environ 10:229–235

    Article  Google Scholar 

  61. Fortuny A, Ferrer C, Bengoa C, Font J, Fabregat A (1995) Catalytic removal of phenol from aqueous phase using oxygen or air as oxidant. Catal Today 24:79–83

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Madeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Herney-Ramírez, J., Madeira, L.M. (2010). Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes. In: Gil, A., Korili, S., Trujillano, R., Vicente, M. (eds) Pillared Clays and Related Catalysts. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6670-4_6

Download citation

Publish with us

Policies and ethics