Skip to main content

Heterogeneous Complex Catalysts Having Ionically Macrocyclic Complex Bonded to Montmorillonite Clay for Industrial Reactions

  • Chapter
  • First Online:
  • 1586 Accesses

Abstract

Macrocyclic complexes were synthesized and ionically bonded with montmorillonite clay. Such catalysts are found to have excellent thermal stability and can be used for the industrially important catalytic reactions. The oxidation of cyclohexane without any promoter or solvent has been carried out using molecular oxygen. Based on the catalytic mechanism, experimental data were fitted to determine various rate constants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reichle WT (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics 22:135–141

    CAS  Google Scholar 

  2. Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41:53–71

    CAS  Google Scholar 

  3. Vaughan DEW (1988) Pillared clays – a historical perspective. Catal Today 2:87–198

    Google Scholar 

  4. Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14:161–198

    CAS  Google Scholar 

  5. Rhodes CN, Brown DR (1993) Surface properties and porosities of silica and acid-treated montmorillonite catalyst supports: influence on activities of supported ZnCl2 alkylation catalysts. J Chem Soc Faraday Trans 9:1387–1391

    Google Scholar 

  6. Liu GH, Ko AN, Chang YC (1995) Synthesis and properties of pillared montmorillonite formed by intercalation of transition metal macrocyclic complexes. Micropor Mater 5:61–67

    CAS  Google Scholar 

  7. Mishra T, Parida K (1998) Transition metal oxide pillared clay: 5. Synthesis, characterization and catalytic activity of iron–chromium mixed oxide pillared montmorillonite. Appl Catal A Gen 174:91–98

    CAS  Google Scholar 

  8. Vicente MA, Belver C, Trujillano R, Rives V, Alvarez AC, Lambert JF, Korili SA, Gandia LM, Gil A (2004) Preparation and characterization of Mn and Co supported catalysts derived from Al pillared clays and Mn and Co complexes. Appl Catal A 267:47–58

    CAS  Google Scholar 

  9. Akcay M (2004) The catalytic acylation of alcohols with acetic acid by using Lewis acid character pillared clays. Appl Catal A 269:157–160

    CAS  Google Scholar 

  10. Belver C, Bañares-Muñoz MA, Vicente MA (2004) Fe-saponite pillared and impregnated catalysts I. Preparation and characterization. Appl Catal A 50:101–112

    CAS  Google Scholar 

  11. Carriazo JG, Guelou E, Barrault J, Tatibouet JM, Moreno S (2003) Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Appl Clay Sci 22:303–308

    CAS  Google Scholar 

  12. Barrault J, Tatiboue JM, Papayannakos N (2000) Catalytic wet peroxide oxidation of phenol over pillared clays containing iron or copper species. C R Acad Sci Paris Serie IIc Chim Chem 3:777–783

    CAS  Google Scholar 

  13. Ovejero G, Sotelo JL, Martinez F, Melero JA, Gordo L (2001) Wet peroxide oxidation of phenolic solutions over different iron-containing zeolitic materials. Ind Eng Chem Res 40(18):3921–3928

    CAS  Google Scholar 

  14. Guo J, Dahhan MA (2003) Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind Eng Chem Res 42(12):2450–2460

    CAS  Google Scholar 

  15. Carriazo JG, Guelou E, Barrault J, Tatiboue JM, Moreno S (2003) Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Appl Clay Sci 22:303–308

    CAS  Google Scholar 

  16. Mei JG, Yu SM, Cheng J (2004) Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe–Ti-PILC employing microwave irradiation. Catal Commun 5:437–440

    CAS  Google Scholar 

  17. Guo J, Dahhan MA (2005) Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst. Chem Eng Sci 60:735–746

    CAS  Google Scholar 

  18. Jinjun L, Zheng J, Zhengping H, Xiuyan X, Yahui Z (2005) Pillared laponite clays-supported palladium catalysts for the complete oxidation of benzene. J Mol Catal A Chem 225: 173–179

    Google Scholar 

  19. Timofeeva MN, Khankhasaeva ST, Badmaeva SV, Chuvilin AL, Burgina EB, Ayupov AB, Panchenko VN, Kulikova AV (2005) Synthesis, characterization and catalytic application for wet oxidation of phenol of iron-containing clays. Appl Catal B 59:243–248

    CAS  Google Scholar 

  20. Martinez F, Melero JA, Botas J, Pariente MI, Molina R (2007) Treatment of phenolic effluents by catalytic wet hydrogen peroxide oxidation over Fe2O3/SBA-15 extruded catalyst in a fixed-bed reactor. Ind Eng Chem Res 46(13):4396–4405

    CAS  Google Scholar 

  21. Ramirez JH, Lampinen M, Vicente MA, Costa CA, Madeira LM (2008) Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Ind Eng Chem Res 47(2):284–294

    Google Scholar 

  22. Polubesova T, Chen Y, Navon R, Chefetz B (2008) Interactions of hydrophobic fractions of dissolved organic matter with Fe3+- and Cu2+–montmorillonite. Environ Sci Technol 42(13):4797–4803

    CAS  Google Scholar 

  23. Gokulakrishnan N, Pandurangan A, Sinha PK (2009) Catalytic wet peroxide oxidation technique for the removal of decontaminating agents ethylenediaminetetraacetic acid and oxalic acid from aqueous solution using efficient Fenton type Fe-MCM-41 mesoporous materials. Ind Eng Chem Res 48(3):1556–1561

    CAS  Google Scholar 

  24. Chen TJ, Li G, Ding X, Sheng G, Mai JFB, O’Shea KE (2008) Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts. Degradation of decabromodiphenyl ether (BDE 209). Catal Today 139:69–76

    Google Scholar 

  25. Achma RB, Ghorbel A, Sayadi S, Dafinov A, Medina F (2008) A novel method of copper-exchanged aluminum-pillared clay preparation for olive oil mill wastewater treatment. J Phys Chem Solids 69:1116–1120

    Google Scholar 

  26. Onda A, Suzuki Y, Kajiyoshi K, Yanagisawa K (2006) Catalytic performance of autoclave liners in the wet oxidation of naphthalene. Ind Eng Chem Res 45(7):2194–2198

    CAS  Google Scholar 

  27. Gu C, Li H, Teppen BJ, Boyd S (2008) Octachlorodibenzodioxin formation on Fe(III)–montmorillonite clay. Environ Sci Technol 42(13):4758–4763

    CAS  Google Scholar 

  28. Anisia KS, Kumar A (2007) Oxidation of cyclohexane with molecular oxygen in presence of characterized macrocyclic heteronuclear FeCu complex catalyst ionically bonded to zirconium pillared montmorillonite clay. J Mol Catal A Chem 271:164–179

    CAS  Google Scholar 

  29. Kalilur Rahiman A, Rajesh K, Shanmuga Bharathi K, Sreedaran S, Narayanan V (2009) Catalytic oxidation of alkenes by manganese(III) porphyrin-encapsulated Al, V, Si-mesoporous molecular sieves. Inorg Chim Acta 362:1491–1500

    Google Scholar 

  30. Liu YX, Zhang X, Guo L, Wu F, Deng NS (2008) Photodegradation of bisphenol A in the montmorillonite KSF suspended solutions. Ind Eng Chem Res 47(19):7141–7146

    CAS  Google Scholar 

  31. Remili C, Kaci M, Kachbi S, Bruzaud S, Grohens Y (2009) Photo-oxidation of poly styrene/clay nanocomposites under accelerated UV exposure: effect on the structure and molecular weight. J Appl Poly Sci 112:2868–2875

    CAS  Google Scholar 

  32. Bottino FA, Pasquale GD, Fabbri E, Orestano A, Pollicino A (2009) Influence of montmorillonite nano-dispersion on polystyrene photo-oxidation. Polym Degrad Stabil 94:369–374

    CAS  Google Scholar 

  33. Menesi J, Korosi L, Bazso E, Zllmer V, Richardt A, Dekany I (2008) Photocatalytic oxidation of organic pollutants on titania–clay composites. Chemosphere 70:538–542

    CAS  Google Scholar 

  34. Barros VB, Faria AL, MacLeod TCO, Morales LAB, Assis MD (2008) Ironporphyrin immobilized onto montmorillonite as a biomimetical model for azo dye oxidation. Int Biodeterior Biodegrad 61:337–344

    CAS  Google Scholar 

  35. Lan Y, Li C, Mao J, Jun Sun A (2008) Influence of clay minerals on the reduction of Cr6+ by citric acid. Chemosphere 71:781–787

    CAS  Google Scholar 

  36. Jiang J, Ma K, Zheng Y, Cai S, Li R, Ma J (2009) Cobalt salophen complex immobilized into montmorillonite as catalyst for the epoxidation of cyclohexene by air. Appl Clay Sci 45: 117–122

    Google Scholar 

  37. Sis BE, Khalili B, Abdollahifar A, Hashemi M (2007) Transition metal free oxidation of alcohols to carbonyl compounds using hydrogen peroxide catalyzed with LiCl on montmorillonite K10. Acta Chim Slov 54:635–637

    Google Scholar 

  38. Schuster H, Rios LA, Weckes PP, Hoelderich WF (2008) Heterogeneous catalysts for the production of new lubricants with unique properties. Appl Catal A Gen 348:266–270

    CAS  Google Scholar 

  39. Rode CV, Kshirsagar VS, Nadgeri JM, Patil KR (2007) Cobalt–salen intercalated montmorillonite catalyst for air oxidation of p-cresol under mild conditions. Ind Eng Chem Res 46:8413–8419

    CAS  Google Scholar 

  40. Anisia KS, Kumar A (2008) Synthesis of heterogeneous copper complex catalyst for oxidation of cyclohexane using molecular oxygen. Can J Chem Eng 86:1054–1061

    CAS  Google Scholar 

  41. Lal S, Anisia KS, Jhansi M, Kishore L, Anil Kumar (2007) Development of heterogeneous catalyst by ionically bonding macrocyclic Zr–Zr complex to montmorillonite clay for depolymerization of polypropylene. J Mol Catal A Chem 265:15–24

    CAS  Google Scholar 

  42. Dhakshinamoorthy A, Pitchumani K (2006) Clay-anchored non-heme iron–salen complex catalyzed cleavage of C=C bond in aqueous medium. Tetrahedron 62:9911–9918

    CAS  Google Scholar 

  43. Cardoso B, Pires J, Carvalho AP, Biernacka IK, Silva AR, Castro B, Freire C, (2005) Mn(III) salen complex immobilised into pillared clays by in situ and simultaneous pillaring/encapsulation procedures application in the heterogeneous epoxidation of styrene. Micropor Mesopor Mater 86:295–302

    CAS  Google Scholar 

  44. Dasa P, Biernacka IKZ, Silva AR, Carvalho AP, Pires J, Freire C (2006) Encapsulation of chiral Mn(III) salen complexes into aluminium pillared clays: application as heterogeneous catalysts in the epoxidation of styrene. J Mol Catal A Chem 248:135–143

    Google Scholar 

  45. Kameyama H, Narumi F, Hattori T, Kameyamaa H (2006) Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite. J Mol Catal A Chem 258:172–177

    CAS  Google Scholar 

  46. Ramaswamy V, Malwadkar S, Chilukuri S (2008) Cu–Ce mixed oxides supported on Al-pillared clay: effect of method of preparation on catalytic activity in the preferential oxidation of carbon monoxide. Appl Catal B 84:21–29

    CAS  Google Scholar 

  47. Tandon PK, Singh SB, Srivastava M (2007) Synthesis of some aromatic aldehydes and acids by sodium ferrate in presence of copper nano-particles adsorbed on K 10 montmorillonite using microwave irradiation. Appl Organometal Chem 21:264–267

    CAS  Google Scholar 

  48. Faria AL, MacLeod TCO, Assis MD (2008) Carbamazepine oxidation catalyzed by iron and manganese porphyrins supported on aminofunctionalized matrices. Catal Today 133–135: 863–869

    Google Scholar 

  49. Bhor MD, Nandurkar NS, Bhanushali MJ, Bhanage BM (2008) Ultrasound promoted selective synthesis of 1,10-binaphthyls catalyzed by Fe impregnated pillared montmorillonite K10 in presence of TBHP as an oxidant. Ultrason Sonochem 15:195–202

    CAS  Google Scholar 

  50. Dhakshinamoorthy A, Pitchumani K, (2009) Clay-supported ceric ammonium nitrate as an effective, viable catalyst in the oxidation of olefins, chalcones and sulfides by molecular oxygen. Catal Commun 10:872–878

    CAS  Google Scholar 

  51. Das P, Kuźniarska-Biernacka I, Silva AR, Carvalho AP, Pires J, Freire C (2006) Encapsulation of chiral Mn(III) salen complexes into aluminium pillared clays: application as heterogeneous catalysts in the epoxidation of styrene. J Mol Catal A Chem 248:135–143

    CAS  Google Scholar 

  52. Vedrine JC, Millet JMM, Volta J (1996) Molecular description of active sites in oxidation reactions: acid–base and redox properties, and role of water. Catal Today 32:115–123

    CAS  Google Scholar 

  53. Corma A, Gracia H (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 103:4307–4365

    CAS  Google Scholar 

  54. Ghorbel A, Hoang-Van C, Teichner SJ (1973) Catalytic activity of amorphous alumina prepared in aqueous media: I. Catalytic activity in isomerization of butene-1. J Catal 30:298–308

    CAS  Google Scholar 

  55. Adeeva V, Deehan JW, Janchen J, Lei GD, Schunemaron V, Vandevan LJM, Sachtler WMH, Vansanten RA (1995) Acid sites in sulfated and metal promoted zirconium dioxide catalysts. J Catal 151:364–372

    CAS  Google Scholar 

  56. Ponec V (2001) Alloy catalysts: the concepts. Appl Catal A 222:31–45

    CAS  Google Scholar 

  57. Huber GW, Dumesic JA (2005) An overview of aqueous – phase catalytic process for the production of hydrogen and alkanes in a biorefinery. Catal Today 111:119–132

    Google Scholar 

  58. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts. Appl Catal B 43:13–26

    CAS  Google Scholar 

  59. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Aqueous-phase reforming of ethylene glycol on silica-supported platinum catalysts. Catal Lett 88:1–8

    Google Scholar 

  60. Lotero E, Liu Y, Lopez DE, Suwannakern K, Bruce DA, Godwin JG (2005) Synthesis of biodiesel with acid catalysis. Ind Eng Chem Res 44:5353–5363

    CAS  Google Scholar 

  61. Srivastava A, Prasad R (2000) Triglycerides based diesel fuels. Renew Sustain Energy Rev 4:111–133

    CAS  Google Scholar 

  62. Wasmus S, Kuver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31

    CAS  Google Scholar 

  63. Hamnett A (1997) Mechanism and electro catalysis in the direct methanol fuel cells. Catal Today 38:445–457

    CAS  Google Scholar 

  64. Wang CY (2004) Fundamental model for fuel cell engineering. Chem Rev 104:4727–4766

    CAS  Google Scholar 

  65. Jones CJ (2001) d- and f-Block chemistry. Royal Society of Chemistry, UK

    Google Scholar 

  66. Gavrilova AL, Bosnich B (2004) Principles mononucleating and binucleating ligand design. Chem Rev 104:349–383

    CAS  Google Scholar 

  67. Sargeson AM (1966) Conformations of Coordinated Chelates In: Karlin RL (ed) Transition metal chemistry (New York), vol 3. Marcel Dekker, New York, NY, pp 303–343

    Google Scholar 

  68. Senkler GH Jr, Mislow KJ (1972) Barrier to pyramidal inversion in ethylmethylphenylarsine. J Am Chem Soc 94:291–296

    Google Scholar 

  69. Emmert C, Vereslet M, Tuchagues JP (1996) Pentadentate dinucleating ligands affording bis(μ-carboxylato-O,O)diiron(II) complexes. J Chem Soc Chem Commun 66:617–619

    Google Scholar 

  70. Tsukada N, Tamura O, Inoue Y (2002) Synthesis and structures of palladium and platinum a-frame complexes bridged by a novel binucleating ligand, N,N'-bis[(2-diphenylphosphino)phenyl]-formamidine. Organometallics 21:2521–2528

    CAS  Google Scholar 

  71. van Koningsbruggen PJ, Gatteschi D, de Graaff RAG, Haasnoot JG, Reedijk J, Zanchini C (1995) Isotropic and anisotropic magnetic exchange interactions through μ-N1,N2 1,2,4-triazole and μ-sulfato bridges: X-ray crystal structure, magnetic properties, and single-crystal EPR study of (μ-4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-N',N1,N2,N'')(μ-sulfato-O,O')[(sulfato-O)aquacopper(II)] triaquacopper(II) hydrate. Inorg Chem 34:5175–5182

    Google Scholar 

  72. Incarvito C, Rheingold AL, Qin CJ, Bosnich ALB (2001) Bimetallic reactivity on the use of oxadiazoles as binucleating ligands. Inorg Chem 40:1386–1390

    CAS  Google Scholar 

  73. Brooker S, Kelly RJ, Moubaraki B, Murray KS (1996) First dicopper(II) complex to contain bridging macrocyclic pyridazine units: structure, electrochemistry and magnetochemistry of [Cu2L(MeCN)2(ClO4)2][ClO4]2. J Chem Soc Chem Commun 2579–2580

    Google Scholar 

  74. Rooker S, de Geest DJ, Kelly RJ, Plieger PG, Moubaraki B, Murray KS, Jameson GJ (2002) Exchange-coupled high-spin, low-spin and spin-crossover dicobalt (II) complexes of a pyridazine-containing Schiff-base macrocycle: control of cobalt (II) spin state by choice of axial ligands. Chem Soc Dalton Trans 2080–2087

    Google Scholar 

  75. Tikkanen WR, Kruger C, Bomben KD, Jolly WL, Kaska WC, Ford PC (1984) Synthesis, characterization, and X-ray molecular structures of mono- and dinuclear copper complexes with 2,7-bis(2-pyridyl)-1,8-naphthyridine. Inorg Chem 23:3633–3638

    CAS  Google Scholar 

  76. Gajda T, Kramer R, Jansco A (2000) Structure, equilibrium and ribonuclease activity of copper (II) and zinc (II) complexes formed with a dinucleating bis-imidazole ligand. Eur J Inorg Chem 1635–1644

    Google Scholar 

  77. Kersting B (1998) Preparation, structures, and properties of dinuclear Ni and Pd complexes of tridentate amine-chalcogenolate ligands. Eur J Inorg Chem 1071–1077

    Google Scholar 

  78. Kersting B, Siebert D (1998) First examples of dinickel complexes containing the N3Ni(2-SR)3NiN3 core. Synthesis and crystal structures of [L2Ni2][BPh4]2 and [L3Ni2][BPh4]2 (L = 2,6-di(aminomethyl)-4-tert-butyl-thiophenolate). Inorg Chem 37:3820–3828

    CAS  Google Scholar 

  79. Kersting B, Siebert D (1999) Preparation, structure, and properties of a mixed-valent NiIINiIII amine–selenolate complex. Eur J Inorg Chem 189–193

    Google Scholar 

  80. Gange RR, Spiro CL, Smith TJ, Hamann CA, Thies WR, Shiemke AK (1981) The synthesis, redox properties and ligand binding of heterobinuclear transition-metal macrocyclic ligand complexes. Measurement of an apparent delocalization energy in a mixed-valent CuICuII complex. J Am Chem Soc 103:4073–4081

    Google Scholar 

  81. Farrugia LJ, Win GX (2003) Ver 1.64: an integrated systems of windows programs for the solution, refinement and analysis of single-crystal X-ray diffraction data. Department of Chemistry, University Of Glasgow, UK

    Google Scholar 

  82. Berezin IV, Denisov ET, Emanuel NM (1966) The oxidation of cyclohexane. Transl. by Allen KA. Pergamon Press, Oxford

    Google Scholar 

  83. Emanuel NM, Denisov ET, Maizus ZK (1967) Liquid phase oxidation of hydrocarbons. Plenum press, New York, NY

    Google Scholar 

  84. Suresh AK, Sharma MM, Sridhar T (2000) Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons. Ind Eng Chem Res 39:3958–3997

    CAS  Google Scholar 

  85. Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinacé EV, Pires EL (2001) Cyclohexane oxidation continues to be a challenge. Appl Catal A 211:1–17

    CAS  Google Scholar 

  86. Carvalho WA, Varaldo PB, Wallau M, Schuchardt U (1997) Mesoporous redox molecular sieves analogous to MCM-41. Zeolites 18:408–416

    CAS  Google Scholar 

  87. Arends WCE, Sheldon RA, Wallau M, Schuchardt U (1997) Oxidative transformations of organic compounds mediated by redox molecular sieves. Angew Chem Int Ed Engl 36:1144–1163

    Google Scholar 

  88. Lin SS, Weng HS (1994) Liquid phase oxidation of cyclohexane over CoAlPO-5. Appl Catal A Gen 118:21–31

    CAS  Google Scholar 

  89. Sakthivel A, Selvam P (2002) Mesoporous (Cr) MCM-41: a mild and efficient heterogeneous catalyst for selective oxidation of cyclohexane. J Catal 211:134–143

    CAS  Google Scholar 

  90. Steeman JWM, Kaarsemaker S, Hoftyzer PJ (1961) A pilot plant study of the oxidation of cyclohexane of air under pressure. Chem Eng Sci 14:139–149

    CAS  Google Scholar 

  91. Suresh AK, Sridhar T, Potter OE (1988) Autocatalytic oxidation of cyclohexane – modeling reaction kinetics. AIChE J 38:69–80

    Google Scholar 

  92. Mauryaa MR, Chandrakar AK, Chand S (2007) Oxovanadium (IV) and copper (II) complexes of 1,2-diaminocyclohexane based ligand encapsulated in zeolite-Y for the catalytic oxidation of styrene, cyclohexene and cyclohexane. J Mol Catal A Chem 270:225–235

    Google Scholar 

  93. Ebadi A, Safari N, Peyrovi MH (2007) Aerobic oxidation of cyclohexane with γ-alumina supported metallophthalocyanines in the gas phase. Appl Catal A 321:135–139

    CAS  Google Scholar 

  94. Silva AC, Fernandez TL, Carvalho NMF, Herbst MH, Bordinhao J, Horn A Jr, Wardell JL, Oestreicher EG, Antunes OAC (2007) Oxidation of cyclohexane catalyzed by bis-(2-pyridylmethyl)amine Cu(II) complexes. Appl Catal A 317:154–160

    CAS  Google Scholar 

  95. Alegria ECB, Kirillova MV, Martins LMDRS, Pombeiro AJL (2007) Pyrazole and trispyrazolylmethane rhenium complexes as catalysts for ethane and cyclohexane oxidations. Appl Catal A 317:43–52

    CAS  Google Scholar 

  96. Guan Huang G, Guo C, Tang S (2007) Catalysis of cyclohexane oxidation with air using various chitosan-supported metallotetraphenylporphyrin complexes. J Mol Catal A 261:125–130

    Google Scholar 

  97. Carvalho NMF, Horn A Jr, Antunes OAC (2006) Cyclohexane oxidation catalyzed by mononuclear iron (III) complexes. Appl Catal A 305:140–145

    CAS  Google Scholar 

  98. Esmelindro MC, Oestreicher EG, Marquez-Alvarez H, Dariva C, Egues SMS, Fernandes C, Bortoluzzi AJ, Drago V, Antunes OAC (2005) Catalytic oxidation of cyclohexane by a binuclear Fe(III) complex biomimetic to methane monooxygenase. J Inorg Biochem 99:2054–2061

    CAS  Google Scholar 

  99. Patcas F, Patcas FC. (2006) Reaction pathways and kinetics of the gas-phase oxidation of cyclohexane on NiO/γ-Al2O3 catalyst. Catal Today 117:253–258

    CAS  Google Scholar 

  100. Anand R, Hamdy MS, Gkourgkoulas P, Maschmeyer Th, Jansen JC, Hanefeld U (2006) Liquid phase oxidation of cyclohexane over transition metal incorporated amorphous 3D-mesoporous silicates M-TUD-1 (M = Ti, Fe, Co and Cr). Catal Today 117:279–283

    CAS  Google Scholar 

  101. Wen Y, Potter OE, Sridhar T (1997) Uncatalyzed oxidation of cyclohexane in a continuous reactor. Chem Eng Sci 52:4593–4605

    CAS  Google Scholar 

  102. Tolman CA, Druliner JD, Krusic PJ, Nappa MJ, Sieldel WC, Williams ID, Ittel SD (1988) Catalytic conversion of cyclohexylhydroperoxide to cyclohexanone and cyclohexanol. J Mol Catal 48:129–148

    CAS  Google Scholar 

  103. Tolman CA, Druliner JD, Nappa MJ, Herron N (1989). Alkane oxidation studies in DuPont’s Central Research Department, Chap X. In: Hill CL (ed) Activation and functionalization of alkanes. Wiley, New York, NY

    Google Scholar 

  104. Spielman M (1964) Selectivity in hydrocarbon oxidation. AIChE J 10:496–501

    CAS  Google Scholar 

  105. Alagy J, Trombouze P, Van Landeghem H (1974) Designing a cyclohexane oxidation reactor. Ind Eng Chem Proc Des Develop 13:317–323

    CAS  Google Scholar 

  106. Pohorecki R, Baldgya J, Moniuk W, Podgorska W, Zdrojkowski A, Wierzchowski PT (2001) Kinetic model of cyclohexane oxidation. Chem Eng Sci 56:1285–1291

    CAS  Google Scholar 

  107. Pohorecki R, Baldgya J, Moniuk W, Kryysztoforski A, Wojcik Z (1992) Liquid phase oxidation of cyclohexane – modeling and industrial scale process simulation. Chem Eng Sci 47:2559–2564

    CAS  Google Scholar 

  108. Steeman JWM, Kaarsemaker S, Hoftyzer PJ (1961) A pilot plant study of the oxidation of cyclohexane of air under pressure. Chem Eng Sci 14:139–149

    CAS  Google Scholar 

  109. Saunby JB, Kiff BW (1976) Liquid-phase oxidation – hydrocarbons to petrochemicals. Hydrocarbon Process 55:247

    CAS  Google Scholar 

  110. Modén B, Zhan B, Dakka J, Santiesteban JG, Iglesia E (2006) Kinetics and mechanism of cyclohexane oxidation on MnAPO-5 catalysts. J Catal 239:390–401

    Google Scholar 

  111. Nunes GS, Mayer I, Toma HE, Araki K (2005) Kinetics and mechanism of cyclohexane oxidation catalyzed by supramolecular manganese (III) porphyrins. J Catal 236:55–61

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lal, S., Anisia, K., Kumar, A. (2010). Heterogeneous Complex Catalysts Having Ionically Macrocyclic Complex Bonded to Montmorillonite Clay for Industrial Reactions. In: Gil, A., Korili, S., Trujillano, R., Vicente, M. (eds) Pillared Clays and Related Catalysts. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6670-4_16

Download citation

Publish with us

Policies and ethics