Skip to main content

Recent Advances in the Preparation and Application of Mesoporous Aluminophosphate-Based Materials

  • Chapter
  • First Online:
Pillared Clays and Related Catalysts

Abstract

The synthesis of aluminophosphates has significantly advanced in recent years and in particular the synthesis of mesoporous aluminophosphate. This chapter reviews this advancement and outlines progress in the synthesis of metal-containing mesoporous aluminophosphates and the advances in the applications of these solids particularly in the area of catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson TS, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) Aluminophosphate molecular-sieves – A new class of microporous crystalline inorganic solids. J Am Chem Soc 104:1146–1147

    Article  CAS  Google Scholar 

  2. Hartmann M, Kevan L (1999) Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves: location, interaction with adsorbates and catalytic properties. Chem Rev 99:635–663

    Article  CAS  Google Scholar 

  3. Zhao DY, Luan ZH, Kevan L (1997) Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves. Chem Commun 11:1009–1010

    Article  Google Scholar 

  4. Kimura T, Sugahara Y, Kuroda K (1999) Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents. Chem Mater 11:508–518

    Article  CAS  Google Scholar 

  5. Sayari A, Karra VR, Reddy JS, Moudrakovski IL (1996) Synthesis of a mesostructured lamellar aluminophosphate. Chem Commun 3:411–412

    Article  Google Scholar 

  6. Feng PY, Xia Y, Feng JL, Bu XH, Stucky GD (1997) Synthesis and characterization of mesostructured aluminophosphates using the fluoride route. Chem Commun 10:949–950

    Article  Google Scholar 

  7. Eswaramoorthy M, Neeraj S, Rao CNR (1999) Synthesis of hexagonal microporous silica and aluminophosphates by supramolecular templating of a short-chain amine. Micropor Mesopor Mater 28:205–210

    Article  CAS  Google Scholar 

  8. Cheng SF, Tzeng JN, Hsu BY (1997) Synthesis and characterization of a novel layered aluminophosphates of kanemite-like structure. Chem Mater 9:1788–1796

    Article  CAS  Google Scholar 

  9. Kron DA, Holland BT, Wipson R, Maleke C, Stein A (1999) Anion exchange properties of a mesoporous aluminophosphate. Langmuir 15:5300–8308

    Article  Google Scholar 

  10. Holland BT, Isbester PK, Blanford CF, Munson EJ, Stein A (1997) Synthesis of ordered aluminophosphates and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors. J Am Chem Soc 119:6796–6803

    Article  CAS  Google Scholar 

  11. Kimura T (2005) Synthesis of mesostructured and mesoporous aluminium organophosphonates prepared by using diphosphonic acids with alkylene groups. Chem Mater 17:337–344

    Article  CAS  Google Scholar 

  12. Tiemann M, Förba M (2001) Mesostructured porous aluminophosphates synthesized with supramolecular structure directors. Chem Mater 13:3211–3217

    Article  CAS  Google Scholar 

  13. Kimura T, Sugahara Y, Kuroda K (1997) Synthesis of a hexagonal mesostructured aluminophosphate. Chem Lett 10:983–984

    Article  Google Scholar 

  14. Luan ZH, Zhao DY, He HY, Klinowski J, Kevan L (1998) Characterization of aluminophosphate-based tubular mesoporous molecular sieves. J Phys Chem B 102:1250–1259

    Article  CAS  Google Scholar 

  15. He J, Yang XB, Evans DG, Duan X (2003) New methods to remove organic templates from porous materials. Mater Chem Phys 77:270–275

    Article  CAS  Google Scholar 

  16. Tiemann M, Schulz M, Jäger C, Förba M (2001) Mesoporous aluminophosphate molecular sieves synthesized under nonaqueous conditions. Chem Mater 13:2885–2891

    Article  CAS  Google Scholar 

  17. Masson NC, Pastore HO (2001) Synthesis and characterization of tubular aluminophosphate mesoporous materials containing framework magnesium. Micropor Mesopor Mater 44:173–183

    Article  Google Scholar 

  18. Ho LH, Ikegawa T, Nishiguchi H, Nagaoka K, Takita Y (2006) Synthesis and characterization of molybdenum incorporated mesoporous aluminophosphate. Appl Surf Sci 252:6260–6268

    Article  CAS  Google Scholar 

  19. Sarkar K, Bhaumik A (2008) Hydrothermal transformation of a layered aluminophosphates into a mesoporous structure. J Porous Mater 15:445–450

    Article  CAS  Google Scholar 

  20. Yu J, Wang A, Li X, Tan J, Hu Y (2007) An improved calcination route to obtain high quality mesoporous aluminophosphate materials. Mater Lett 61:2620–2623

    Article  CAS  Google Scholar 

  21. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  22. Tian BZ, Liu XY, Tu B, Yu CZ, Fan J, Wang LM, Xie SH, Stucky GD, Zhao DY (2003) Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs. Nat Mater 2:159–163

    Article  CAS  Google Scholar 

  23. Yu C, Tian B, Zhao D (2003) Recent advances in the synthesis of non-siliceous mesoporous materials. Curr Opin Solid State Mater Sci 7:191–197

    Article  CAS  Google Scholar 

  24. Wang L, Tian B, Fan J, Liu X, Yang H, Yu C, Tu B, Zhao D (2004) Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an “acid–base pair” route. Micropor Mesopor Mater 67:123–133

    Article  CAS  Google Scholar 

  25. Lü J-M, Ranjit KT, Rungrojchaipan P, Kevan L (2005) Synthesis of mesoporous aluminophosphate (AlPO) and investigation of zirconium incorporation into mesoporous AlPOs. J Phys Chem 109:9284–9293

    Google Scholar 

  26. Mazaj A, Costacurta S, Logar NZ, Mali G, Tušar NN, Innocenzi P, Malfatti L, Thibault-Starzyk F, Amenitsch H, Kaučič V, Soler-Illia GJAA (2008) Mesoporous aluminophosphate thin films with cubic pore arrangement. Langmuir 24:6220–6225

    Article  CAS  Google Scholar 

  27. Kimura T, Kato K, Yamauchi Y (2009) Temperature-controlled and aerosol-assisted synthesis of aluminium organophosphonate spherical particles with uniform mesopores. Chem Commun 33:4938–4940

    Article  Google Scholar 

  28. Kimura T, Kato K (2007) Simple removal of oligomeric surfactants and triblock copolymers from mesostructured precursors of ordered mesoporous aluminium organophosphonates. Micropor Mesopor Mater 101:207–213

    Article  CAS  Google Scholar 

  29. Zhao GL, Zhang XJ, Chen TH, Yuan ZY (2006) Synthesis of aluminophosphates and silicoaluminophosphate in the presence of nonionic poly(ethylene oxide) surfactant. Mater Sci Eng B 131:263–266

    Article  CAS  Google Scholar 

  30. Du Y, Yang Y, Liu S, Xiao N, Zhang Y, Xiao F-S (2008) Mesoporous aluminophosphates and Fe-aluminophosphates with highly thermal stability and large surface area templated from semi-fluorinated surfactant. Micropor Mesopor Mater 114:250–256

    Article  CAS  Google Scholar 

  31. Kimura T, Sugahara, Kuroda K (1998) Synthesis of mesoporous aluminophosphates and their adsorption properties. Micropor Mesopor Mater 22:115–126

    Article  CAS  Google Scholar 

  32. Han Y, Li DF, Zhao L, Song JW, Yang XY, Li N, Di Y, Li CJ, Wu S, Xu XZ, Meng XJ, Lin KF, Xiao FS (2003) High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon–hydrocarbon surfactant mixtures. Angew Chem Int Ed 42:3633–3637

    Article  CAS  Google Scholar 

  33. Chakraborty B, Pulikottil AC, Das S, Viswanathan B (1997) Synthesis and characterisation of a mesoporous SAPO. Chem Commun 10:911–912

    Article  Google Scholar 

  34. Chakraborty B, Pulikottil AC, Viswanathan B (1998) Physico-chemical and MAS NMR characterization of mesoporous SAPOs. Appl Catal A: Gen 167:173–181

    Article  CAS  Google Scholar 

  35. Zhao XS, Lu GQ, Whittaker AK, Drennan J, Xu H (2002) Influence of synthesis parameters on the formation of mesoporous SAPOs. Micropor Mesopor Mater 55:51–62

    Article  CAS  Google Scholar 

  36. Pastore HO, Coluccia S. Marchese L (2005) Porous aluminophosphates: from molecular sieves to designed acid catalysts. Annu Rev Mater Res 35:315–395

    Article  Google Scholar 

  37. Gianotti E, Oliveira EC, Coluccia S, Pastore HO, Marchese L (2004) The surface acidity of mesoporous silioaluminophosphates: an FTIR study. Stud Surf Sci Catal 154:1498–1504

    Article  Google Scholar 

  38. Conesa TD, Mokaya R, Campelo, JM, Romero AA (2006) Synthesis and characterization of novel mesoporous aluminosilicate MCM-41 containing aluminophosphates building blocks. Chem Commun 17:1839–1841

    Article  Google Scholar 

  39. Mohapatra SK, Sahoo B, Keune W, Selvam P (2002) Synthesis, characterization and catalytic properties of trivalent iron substituted hexagonal mesoporous aluminophosphates. Chem Commun 14:1466–1467

    Article  Google Scholar 

  40. Selvam P, Mohapatra SK (2006) Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate (FeHMA) molecular sieves: synthesis, characterization, and catalytic properties. J Catal 238:88–99

    Article  CAS  Google Scholar 

  41. Subrahmanyam C, Viswanathan B, Varadarajan TK (2004) Synthesis, characterization and catalytic activity of mesoporous trivalent iron substituted aluminophosphates. J Mol Catal A: Chem 233:149–153

    Article  Google Scholar 

  42. Tušar NN, Logar NZ, Arčon I, Mali G, Mazaj M, Ristić A, Lázár K, Kaučič V (2005) Local environment of iron in the mesoporous hexagonal aluminophosphate catalyst. Micropor Mesopor Mater 87:52–58

    Article  Google Scholar 

  43. Zhao XS, Lu GQ, (2001) Aluminophosphate-based mesoporous molecular sieves: synthesis and characterization of TAPOs. Micropor Mesopor Mater 44:185–194

    Article  Google Scholar 

  44. Kapoor MP, Raj A (2000) Synthesis of mesoporous hexagonal titanium aluminophosphate molecular sieves and their catalytic applications. Appl Catal A: Gen 203:311–319

    Article  CAS  Google Scholar 

  45. Selvam P, Mohapatra SK (2004) Synthesis, characterization and catalytic properties of mesoporous TiHMA molecular sieves: selective oxidation of cycloalkanes. Micropor Mesopor Mater 73:137–149

    Article  CAS  Google Scholar 

  46. Gianotti E, Oliveira EC, Coluccia S, Pastore HO, Marchese L (2003) Synthesis and surface properties of Ti-containing mesoporous aluminophosphates. A comparison with Ti-grafted mesoporous silica Ti-MCM-41. Inorg Chem Acta 349:259–264

    Article  CAS  Google Scholar 

  47. Zhao J, Tian B, Yue Y, Hua W, Zhao D, Gao Z (2005) New catalysts for dichlorodifluoromethane hydrolysis: mesostructured titanium and aluminium phosphates. J Mol Catal A: Chem 242:218–223

    Article  CAS  Google Scholar 

  48. Karthik M, Vinu A, Tripathi AK, Gupa NM, Palanichamy M, Murugesan V (2004) Synthesis, characterization and catalytic performance of Mg and Co substituted mesoporous aluminophosphates. Micropor Mesopor Mater 70:15–25

    Article  CAS  Google Scholar 

  49. Khimyak YZ, Klinowski J (2001) Incorporation of magnesium in mesostructured and mesoporous aluminophosphates. Phys Chem Chem Phys 3:1533–1561

    Google Scholar 

  50. Mohapatra SK, Selvam P (2003). Synthesis, characterization and catalytic properties of mesoporous cobalt aluminophosphate molecular sieves. Topics in Catal 22:17–22

    Article  CAS  Google Scholar 

  51. Khimyak YZ, Klinowski J (2002). Synthesis and characterisation of mesoporous aluminophosphates containing boron. J Mater Chem 12:1079–1085

    Article  CAS  Google Scholar 

  52. Zhao D, Luan Z, Kevan L (1997) Electron spin resonance and electron spin echo modulation spectroscopy of aluminophosphate-based mesoporous molecular sieve containing framework manganese. J Phys Chem 243:218–266

    Google Scholar 

  53. Gerbaldi C, Bodoardo S, Fiorilli S, Piana M, Penazzi N (2004) Characterization of Mn species in mesoporous systems: an electrochemical study. Electrochem Acta 50:5539–5545

    Article  Google Scholar 

  54. Venkatathri N, Srivastave R (2005) Synthesis, characterization and catalytic properties of hexagonal mesoporous vanadium aluminophosphate molecular sieves. Catal Commun 6:177–183

    Article  CAS  Google Scholar 

  55. Dorothea G, (1991) Phenol derivatives, Ullmann’s Encyclopaedia of Industrial Chemistry. VCH, Verlagsgesellschaft, Weinheim

    Google Scholar 

  56. Stoochnoff BA and Benoiton NL (1973) Methylation of some phenols and alcohols with sodium hydride methyl iodide in tetrahydrofuran at room temperature. Tetrahedron Lett 1:21–24

    Article  Google Scholar 

  57. Liu G, Wang Z, Jia M, Zou X, Zhu X, Zhang W, Jiang D (2006) Thermally stable amorphous mesoporous aluminophosphates with controllable P/Al ratio: Synthesis, characterization, and catalytic performance for selective O-methylation of catechol. J Phys Chem B 110:16953–16960

    Article  CAS  Google Scholar 

  58. Fu Z, Yu Y, Yin D, Xu Y, Liu H, Liao H, Xu Q, Tan F, Wang J (2005) Vapor-phase highly selective O-methylation of catechol with methanol over ZnCl2 modified γ-Al2O3 catalysts. J Mol Catal A: Gen 232:69–75

    Article  CAS  Google Scholar 

  59. Vishwanathan V, Balakrishna G, Rajesh B, Jayasri V, Sikhwivhilu LM, Coville HJ (2008) Alkylation of catechol with methanol to give guaiacol over sulphate-modified zirconia solid acid catalysts: the influence of structural modification of zirconia on catalytic performance. Catal Commun 9:2422–2427

    Article  CAS  Google Scholar 

  60. Climent MJ, Corma A, Garcia H, Guil-Lopez R, Iborra S, Fornes V (2001) Acid-base bifunctional catalysts for the preparation of fine chemicals: synthesis of jasminaldehyde. J Catal 197:385–393

    Article  CAS  Google Scholar 

  61. Climent MJ, Corma A, Fornes V, Guil-Lopez R, Iborra S, (2002) Aldol condensations on solid catalysts: a cooperative effect between weak acid and base sites. Adv Syn Catal 344:1090–1096

    Article  CAS  Google Scholar 

  62. O’Malley K (2008) Novel solid acid catalysts. PhD thesis, University of Limerick, Ireland

    Google Scholar 

  63. Conesa TD, Mokaya R, Yang Z, Luque R, Campelo JM, Romero AA (2007) Novel mesoporous silicoaluminophosphates as highly active and selective materials in the Beckmann rearrangement of cyclohexanone and cyclododecanone oximes. J Catal 252:1–10

    Article  CAS  Google Scholar 

  64. Ritz J, Fuchs H, Kieczka H, Moran WC (2002) Caprolactam, in Ullmann’s encyclopaedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  65. Curtin T, McMonagle JB, Ruwet M, Hodnett BK (1993) Deactivation and regeneration of alumina catalysts for the rearrangement of cyclohexanone oxime into caprolactam. J Catal 142:172–181

    Article  CAS  Google Scholar 

  66. Curtin T, McMonagle JB, Hodnett BK (1992) Influence of boria loading on the acidity of B2O3/Al2O3 catalysts for the conversion of cylcohexanone oxime to caprolactam. Appl Catal A: Gen 93:91–101

    Article  CAS  Google Scholar 

  67. Sato S, Hasebe S, Sakurai H, Urabe K, Izumi Y (1992) Vapor-phase Beckmann rearrangement over alumina-supported boria catalyst prepared by vapour decomposition method. Appl Catal 29:107–115

    Google Scholar 

  68. Izumi Y, Ichihashi H, Shimazu Y, Kitamura M, Sato H (2007) Development and industrialization of the vapour-phase Beckmann rearrangement process. Bull Chem Soc Jpn 80:1280–1287

    Article  CAS  Google Scholar 

  69. Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinace EV, Pires EL (2001) Cyclohexane oxidation continues to be a challenge. Appl Catal A: Gen 211:1–17

    Article  CAS  Google Scholar 

  70. Mohapatra SK, Selvam P (2005) Synthesis and characterization of divalent cobalt-substituted mesoporous aluminophosphate molecular sieves and their application as novel catalysts for the oxidation of cycloalkanes. J Catal 233:276–287

    Article  Google Scholar 

  71. Mohapatra SK, Hussain SK, Selvam P (2003) Synthesis, characterization and catalytic properties of chromium-containing hexagonal mesoporous aluminophosphate molecular sieves. Catal Lett 85:217–222

    Article  CAS  Google Scholar 

  72. Mohapatra SK, Selvam P (2004) Synthesis, characterization and catalytic properties of vanadium substituted hexagonal mesoporous aluminophosphate molecular sieves. Catal Lett 93:47–52

    Article  CAS  Google Scholar 

  73. Rao PRHP, Ramaswamy AV (1993) Catalytic hydroxylation of phenol over vanadium silicate molecular sieve with MEL structure. Appl Catal A: Gen 93:123–130

    Article  CAS  Google Scholar 

  74. Wu C, Kong Y, Gao F, Wu Y, Lu Y, Wang J, Dong L (2008) Synthesis, characterization and catalytic performance for phenol hydroxylation of Fe-MCM41 with high iron content. Micropor Mesopor Mater 113:163–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Curtin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

O’Malley, K., Reimann, W., Curtin, T. (2010). Recent Advances in the Preparation and Application of Mesoporous Aluminophosphate-Based Materials. In: Gil, A., Korili, S., Trujillano, R., Vicente, M. (eds) Pillared Clays and Related Catalysts. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6670-4_15

Download citation

Publish with us

Policies and ethics