Mesoporous Phosphate Heterostructures: Synthesis and Application on Adsorption and Catalysis

  • Ramón Moreno-Tost
  • José Jiménez-Jiménez
  • Antonia Infantes-Molina
  • Celio L. CavalcanteJr
  • Diana C.S. Azevedo
  • María Dolores Soriano
  • José Manuel López Nieto
  • Antonio Jiménez-López
  • Enrique Rodríguez-Castellón
Chapter

Abstract

Porous phosphate heterostructures (PPHs) are solids formed by a layered metal(IV) phosphate expanded with silica galleries obtained by combining the two main strategies for obtaining mesoporous materials [pillared layered structures (PLS’) and MCM-41]. The different synthetic pathways for obtaining mesoporous phosphate structures with silica galleries with Zr- or Ti-doped silica, the study of their structural, textural and acid properties, its functionalisation with different organic substances such as propionitrile, 3-aminopropyl triethoxysilane, (3-mercaptopropyl)trimethoxysilane, vinyltrimethoxysilane, phenyltriethoxysilane and 3-(triethoxysilyl)propionitrile are discussed. The preparation of metal-supported catalysts and their application in gas separation, adsorption and catalysis are reviewed. Specifically, the use of Cu- and Fe-exchanged PPH for the adsorption of benzothiophene and the separation of propane/propene is the main application as adsorbent. The hydrotreating of aromatic hydrocarbons using ruthenium-impregnated catalysts via hydrogenation and hydrogenolysis/hydrocracking for the production of clean diesel fuels, the selective catalytic reduction of NO from stationary and mobile sources by using Cu–PPH with 1, 3 and 7 wt% of Cu and the selective oxidation of hydrogen sulphide to sulphur with vanadium-containing PPH are the three catalytic reactions of environmental interest studied.

Keywords

Phosphates Heterostructures Adsorption Catalysis Pillared Mesoporous 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from CICYT, Spain (NAN20004-09267-C01 and NAN2004-09267-C03-02). MDS thanks a fellowship from the Universidad Politécnica of Valencia. D.C.S. RMT would like to thank the Ministry of Science and Innovation (Spain) for the financial support under the Program Ramón y Cajal (RYC-2008-03387). Azevedo thanks CAPES, Brazil, for sponsoring a grant (1145/08-8) for visiting professor at UMA, Spain. AIM would like to thank the Ministry of Science and Innovation (Spain) for the financial support under the Program Juan de la Cierva (JCI-2009-05821).

References

  1. 1.
    Voge HH (1983) In: David BH, Hettinger WP (eds) Heterogeneous catalysis, selected American histories, ACS symposium series, no. 222. American Chemical Society, Washington, DC, p 235Google Scholar
  2. 2.
    Swift HE (1977) In: Burton JT, Garten RL (eds) Advanced material in catalysis. Academic, New York, NY, p 209Google Scholar
  3. 3.
    Occelli ML, Rennard RJ (1988) Hydrotreating catalysts containing pillared clays. Catal Today 2:309CrossRefGoogle Scholar
  4. 4.
    Csicsery SM (1984) Shape-selective catalysis in zeolites. Zeolites 4:202CrossRefGoogle Scholar
  5. 5.
    Laszlo P (1986) Catalysis of organic reactions by inorganic solids. Acc Chem Res 19:121CrossRefGoogle Scholar
  6. 6.
    Delaude L, Laszlo P, Smith K (1993) Heightened selectivity in aromatic nitrations and chlorinations by the use of solid supports and catalysts. Acc Chem Res 26:607CrossRefGoogle Scholar
  7. 7.
    Vaughan DEW (1988) Pillared clays – a historical perspective. Catal Today 2:187CrossRefGoogle Scholar
  8. 8.
    Vaughan DEW, Maher PK, Albers EW (1974) US Patent 3,838,037Google Scholar
  9. 9.
    Parthasarthy R, Vaughan DEW (1974) British Patent 1,483,466Google Scholar
  10. 10.
    Flessner U, Jones DJ, Rozière J Zajac J, Storaro L, Lenarda M Pavan M, Jiménez-López A, Rodríguez-Castellón E, Trombetta M, Busca G (2001) A study of the surface acidity of acid-treated montmorillonite clay catalysts. J Mol Catal A 168:247CrossRefGoogle Scholar
  11. 11.
    Narayanan BN Sugunan S (2006) Selective formation of cumene on pillared clays by isopropylation of benzene. React Kinet Catal Lett 89:45CrossRefGoogle Scholar
  12. 12.
    Storaro L, Ganzerla R, Lenarda M, Zanoni R, Jiménez López A, Olivera-Pastor P, Rodríguez Castellón E (1997) Catalytic behavior of chromia and chromium-doped alumina pillared clay materials for the vapor phase deep oxidation of chlorinated hydrocarbons. J Mol Catal A 115:329CrossRefGoogle Scholar
  13. 13.
    Storaro L, Ganzerla R, Lenarda M, Zanoni R (1995) Vapour phase deep oxidation of chlorinated hydrocarbons catalyzed by pillared bentonites. J Mol Catal A 97:139CrossRefGoogle Scholar
  14. 14.
    Mitchell IV (ed) (1990) Pillared layered structures: current trends and applications. Elsevier, LondonGoogle Scholar
  15. 15.
    Jiménez-López A, Maza-Rodríguez J, Rodríguez-Castellón E, Olivera-Pastor P (1996) Mixed alumina chromia pillared layered α-zirconium phosphate materials: acidity and catalytic behaviour for isopropyl alcohol decomposition. J Mol Catal A 108:175CrossRefGoogle Scholar
  16. 16.
    Pérez-Reina FJ, Rodríguez-Castellón E, Jiménez-López A (1999) Dehydrogenation of propane over chromia-pillared zirconium phosphate catalysts. Langmuir 15:8421CrossRefGoogle Scholar
  17. 17.
    Mérida-Robles J, Olivera-Pastor P, Rodríguez-Castellón E, Jiménez-López A (1997) Fluorinated alumina pillared α-zirconium phosphates as supports for metallic nickel catalysts. J Catal 169:317CrossRefGoogle Scholar
  18. 18.
    Mérida-Robles J, Rodríguez-Castellón E, Jiménez-López A (1999) Characterization of Ni, Mo and Ni–Mo catalysts supported on alumina-pillared α-zirconium phosphate and reactivity for the thiophene HDS reaction. J Mol Catal A 145:169CrossRefGoogle Scholar
  19. 19.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710CrossRefGoogle Scholar
  20. 20.
    (a) Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373; (b) Ciesla U, Schüth F (1999) Ordered mesoporous materials. Micropor Mesopor Mater 27:131Google Scholar
  21. 21.
    Galarneau A, Barodawalla A, Pinnavaia TJ (1995) Porous clay heterostructures formed by gallery-templated synthesis. Nature 374:529CrossRefGoogle Scholar
  22. 22.
    Jiménez-Jiménez J, Maireles-Torres P, Olivera-Pastor P, Rodríguez-Castellón E, Jiménez-López A (1997) Sol–Gel synthesis of dodecyltrimethylammonium-expanded zirconium phosphate and its application to the preparation of acidic porous oligomeric gallium(III)-exchanged materials. Langmuir 13:2857CrossRefGoogle Scholar
  23. 23.
    Jiménez-Jiménez J, Rubio-Alonso M, Eliche Quesada D, Rodríguez-Castellón E, Jiménez-López A (2005) Synthesis and characterisation of acid mesoporous phosphate heterostructure (PPH) materials. J Mater Chem 15:3466CrossRefGoogle Scholar
  24. 24.
    Jones DJ, Jiménez-Jiménez J, Jiménez-López A, Maireles-Torres P, Olivera-Pastor P, Rodríguez-Castellón E, Rozière J (1997) Surface characterisation of zirconium-doped mesoporous silica. Chem Commun 431Google Scholar
  25. 25.
    Corma A, Navarro MT, Pérez-Pariente J (1994) Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J Chem Soc Chem Commun 147Google Scholar
  26. 26.
    Rodríguez-Castellón E, Jiménez-López A, Maireles-Torres P, Jones DJ, Rozière J, Trombetta M, Lenarda M, Storaro L (2003) Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves. J Solid State Chem 175:159CrossRefGoogle Scholar
  27. 27.
    Eliche-Quesada D, Mérida-Robles JM, Rodríguez-Castellón E, Jiménez-López A (2005) Ru, Os and Ru–Os supported on mesoporous silica doped with zirconium as mild thio-tolerant catalysts in the hydrogenation and hydrogenolysis/hydrocracking of tetralin. Appl Catal A 279:209CrossRefGoogle Scholar
  28. 28.
    Cagnoli MV, Casuscelli SG, Alvarez AM, Bengoa JF, Gallegos NG, Samaniego NM, Crivello ME, Ghione GE, Pérez CF, Herrero ER, Marchetti SG (2005) “Clean” limonene epoxidation using Ti-MCM-41 catalyst. Appl Catal A 287:227CrossRefGoogle Scholar
  29. 29.
    Jiménez-Jiménez J, Rubio-Alonso M, Eliche-Quesada D, Rodríguez Castellón E, Jiménez-López A (2006) Synthesis and characterization of mixed silica/zirconia and silica/titania porous phospate heterostructures (PPH). J Phys Chem Solids 67:1007CrossRefGoogle Scholar
  30. 30.
    Soriano MD, Jiménez-Jiménez J, Concepción P, Jiménez-López A, Rodríguez-Castellón E, López Nieto JM (2010) Vanadium oxide-porous phosphate heterostructure catalysts for the selective oxidation of H2S to sulphur. Solid State Sci 12:996Google Scholar
  31. 31.
    Alov N, Kutsko D, Spirovová I, Bastl Z (2006) XPS study of vanadium surface oxidation by oxygen ion bombardment. Surf Sci 600:1628CrossRefGoogle Scholar
  32. 32.
    Wachs IE, Deo G, Wenchuysen B, Andreini MA, Vuurman MA, De Boer M, Amiridis MD (1996) Selective catalytic reduction of NO with NH3 over supported vanadia catalysts. J Catal 161:211CrossRefGoogle Scholar
  33. 33.
    Piazuelo R, Rodríguez-Castellón E, Jiménez-Jiménez J, Jiménez-López A, Benavente J (2008) Chemical surface and electrochemical characterization of zirconium phosphate heterostructures. Micropor Mesopor Mater 115:23CrossRefGoogle Scholar
  34. 34.
    Aguilar-Armenta G, Patino-Iglesias ME, Jiménez-Jiménez J, Rodríguez-Castellón E, Jiménez-López A (2006) Application of porous phosphate heterostructure materials for gas separation. Langmuir 22:1260CrossRefGoogle Scholar
  35. 35.
    Wang Y, Yang RT, Heinzel JM (2008) Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials. Chem Eng Sci 63:356CrossRefGoogle Scholar
  36. 36.
    Gutierrez-Alejandre A, Larrubia MA, Ramirez J, Busca G (2006) FT-IR evidence of the interaction of benzothiophene with the hydroxyl groups of H-MFI and H-MOR zeolites. Vibr Spectr 41:42CrossRefGoogle Scholar
  37. 37.
    Moreno-Tost R, Oliveira ML, Eliche-Quesada D, Jiménez-Jiménez J, Jiménez-López A, Rodríguez-Castellón E (2008) Evaluation of Cu-PPHs as active catalysts for the SCR process to control NOx emissions from heavy duty diesel vehicles. Chemosphere 72:608CrossRefGoogle Scholar
  38. 38.
    Eliche-Quesada D, Macías-Ortiz MI, Jiménez-Jiménez J, Rodríguez-Castellón E, Jiménez-López A (2006) Catalysts based on Ru/mesoporous phosphate heterostructures (PPH) for hydrotreating of aromatic hydrocarbons. J Mol Catal A 255:41CrossRefGoogle Scholar
  39. 39.
    Soriano MD, Jiménez-Jiménez J, Concepción P, Jiménez-López A, Rodríguez-Castellón E, López Nieto JM (2009) Selective oxidation of H2S to sulfur over vanadia supported on mesoporous zirconium phosphate heterostructure. Appl Catal B Environ 92:271CrossRefGoogle Scholar
  40. 40.
    Karonis D, Lois E, Stournas S, Zannikos F (1998) Correlations of exhaust emissions from a diesel engine with diesel fuel properties. Energy Fuels 12:230CrossRefGoogle Scholar
  41. 41.
    Cooper BH, Donnis BBL (1996) Aromatic saturation of distillates: an overview. Appl Catal A 137:203CrossRefGoogle Scholar
  42. 42.
    Pieplu A, Saur O, Lavalley JC (1998) Claus catalysis and H2S selective oxidation. Catal Rev Sci Eng 40:409CrossRefGoogle Scholar
  43. 43.
    Uhm JH, Shin MY, Zhidong J, Chung JS (1999) Selective oxidation of H2S to elemental sulfur over chromium oxide catalysts. Appl Catal B 22:293; Yasyerly S, Dogu G, Dogu T (2006) Selective oxidation of H2S to elemental sulfur over Ce–V mixed oxide and CeO2 catalysts prepared by the complexation technique. Catal Today 117:271Google Scholar
  44. 44.
    Bineesh KV, Cho DR, Kim SY, Jermy BR, Park DW (2008) Vanadia-doped titania-pillared montmorillonite clay for the selective catalytic oxidation of H2S. Catal Commun 9:2040CrossRefGoogle Scholar
  45. 45.
    Li KT, Huang CH (2006) Selective oxidation of hydrogen sulfide to sulfur over LaVO4 catalyst: promotional effect of antimony oxide addition. Ind Eng Chem Res 45:7096CrossRefGoogle Scholar
  46. 46.
    Park DW, Byung BH, Ju WD, Kim MI, Kim KH, Woo HC (2005) Selective oxidation of hydrogen sulfide containing excess water and ammonia over Bi-V-Sb-O catalysts. Korean J Chem Eng 22:190CrossRefGoogle Scholar
  47. 47.
    Corma A, Rey F, Rius J, Sabater MJ, Valencia S (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431:287CrossRefGoogle Scholar
  48. 48.
    Khelifa A, Derriche Z, Bengueddach A (1999) Adsorption of propene on NaX zeolite exchanged with Zn2+ and Cu2+. Appl Catal A 178:61CrossRefGoogle Scholar
  49. 49.
    Masuda T, Okubo Y, Mukai SR, Kawase M, Hashimoto K, Shichi A, Satsuma A, Hattori T, Kiyozumi Y (2001) Effective diffusivities of lighter hydrocarbons in Cu- and Co-MFI-type zeolite catalysts. Chem Eng Sci 56:889CrossRefGoogle Scholar
  50. 50.
    Blas FJ, Vega LF, Gubbins KE (1998) Modeling new adsorbents for ethylene/ethane separations by adsorption via π-complexation. Fluid Phase Equilb 150–151:117CrossRefGoogle Scholar
  51. 51.
    Kargol M, Zajac J, Jones DJ, Steriotis Th, Rozière J, Vitse P (2004) Porous silica materials derivatized with Cu and Ag cations for selective propene–propane adsorption from the gas phase: aluminosilicate ion-exchanged monoliths. Chem Mater 16:3911CrossRefGoogle Scholar
  52. 52.
    Grande C, Araújo JDP, Cavenati S, Firpo N, Basaldella E, Rodrigues AE (2004) New π-complexation adsorbents for propane–propylene separation. Langmuir 20:5291CrossRefGoogle Scholar
  53. 53.
    Aguliar-Armenta G, Patino-Iglesias ME (2002) Adsorption equilibria and kinetics of propylene and propane on natural erionite and on erionite exchanged with K+ and Ag+. Langmuir 18:7456CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ramón Moreno-Tost
    • 1
  • José Jiménez-Jiménez
    • 1
  • Antonia Infantes-Molina
    • 2
  • Celio L. CavalcanteJr
    • 3
  • Diana C.S. Azevedo
    • 3
  • María Dolores Soriano
    • 4
  • José Manuel López Nieto
    • 4
  • Antonio Jiménez-López
    • 1
  • Enrique Rodríguez-Castellón
    • 5
  1. 1.Departamento de Química Inorgánica, Cristalografía y Mineralogía, Unidad Asociada al Instituto de Catálisis (CSIC), Facultad de CienciasUniversidad de MálagaMálagaSpain
  2. 2.Instituto de Catálisis y PetroleoquímicaConsejo Superior de Investigaciones CientáficasMálagaSpain
  3. 3.Department of Engenharia QuímicaUniversidade Federal do Ceará, Grupo de Pesquisa em Separações por Adsorção (GPSA)FortalezaBrazil
  4. 4.Instituto de Tecnología Química, UPV-CSICValenciaSpain
  5. 5.Departamento de Química Inorgánica, Cristalografía y Mineralogía, Unidad Asociada al Instituto de Catálisis (CSIC)Universidad de MálagaMálagaSpain

Personalised recommendations