Skip to main content

Clay Materials for Selective Catalytic Reduction of NO x

  • Chapter
  • First Online:
Pillared Clays and Related Catalysts
  • 1598 Accesses

Abstract

Interest in pillared interlayered clays (PILCs) has over the past decades been centered on their prospective industrial utilization in catalysis, sorption, and separations (air – gas mixtures, small hydrocarbons, multicomponent hydrocarbon mixtures, large organic molecules). In this chapter, the application of PILCs materials and other related ones (layered clays, LDHs, PCHs) in selective catalytic reduction of NO x will be tackled in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Health and environment linkages in the urban environment (2009) World Health Organization. http://www.who.int/heli/risks/urban/urbanenv/en/index.html. Accessed 08 August 2009

  2. About air pollution (2009) European Environment Agency. http://www.eea.europa.eu/themes/air/ about-air-pollution. Accessed 08 August 2009; Policy context (2009) European Environment Agency. http://www.eea.europa.eu/themes/air/policy-context. Accessed 08 August 2009

  3. Colls J (2002) Air pollution. Taylor & Francis Group, Spon Press, London

    Google Scholar 

  4. Jones JC (2008) Atmospheric pollution. Ventus Publishing Aps, Aberdeen

    Google Scholar 

  5. Fritz A, Pitchon V (1997) The current state of research on automotive lean NOx catalysis. Appl Catal B Environ 13:1–25

    Article  CAS  Google Scholar 

  6. Sillman S (1999) The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 33:1821–1845

    Article  CAS  Google Scholar 

  7. Pârvulescu VI, Grange P, Delmon B (1998) Catalytic removal of NO. Catal Today 46:233–316 (and references herein)

    Article  Google Scholar 

  8. Van Diepen AE, Makkee M, Moulin JA (2001) Emission control from mobile sources Otto and diesel engines. In: Janssen FJJG, van Santen RA (eds) Environmental catalysis. Imperial College Press, London

    Google Scholar 

  9. Christen K (2005) EU proposes new PM and NOx emission limits. NRC finds hydrogen economy on track. Environ Sci Technol 39:398A

    Article  Google Scholar 

  10. EURO 5 and 6 emissions standards for cars and vans (2006) European Federation for Transport and Environment. Position paper. http://www.transportenvironment.org. Accessed 22 June 2010

  11. Regulation (EC) No 715/2007 of the European Parliament and of the Council (20 June 2007). Official Journal of the European Union. L 171/1-L 171/16

    Google Scholar 

  12. International Maritime Organization (October 2008) Resolution mepc.176(58) from The Marine Environment Protection Committee. http://www.imo.org/environment

  13. Bosch H, Janssen F (1988) Control technologies. Catal Today 2:381–401

    Article  Google Scholar 

  14. Smoot LD, Hill SC, Xung H (1998) NOx control through reburning. Prog Energ Combus 24:385–408

    Article  CAS  Google Scholar 

  15. Heck RM (1999) Catalytic abatement of nitrogen oxides–stationary applications. Catal Today 53:519–523

    Article  CAS  Google Scholar 

  16. Radojevic M (1998) Reduction of nitrogen oxides in flue gases. Environ Pollut 102:685–689

    Article  CAS  Google Scholar 

  17. Roy S, Hegde MS, Madras G (2009) Catalysis for NOx abatement. Appl Energ 86: 2283–2297

    Article  CAS  Google Scholar 

  18. Janssen F (2001) Emission control from stationary sources. In: Janssen FJJG, van Santen RA (eds) Environmental catalysis. Imperial College Press, London

    Google Scholar 

  19. Bosch H, Janssen F (1988) Effect studies. Catal Today 2:433–455

    Article  Google Scholar 

  20. Centi G, Perathoner S (2007) Introduction: state of the art in the development of catalytic processes for the selective catalytic reduction of NOx into N2. Stud Surf Sci Catal 171:1–24

    Article  CAS  Google Scholar 

  21. Trichard JM (2007) Current tasks and challenges for exhaust after-treatment research: an industrial viewpoint. Stud Surf Sci Catal 171:211–232

    Article  CAS  Google Scholar 

  22. Traa Y, Burger B, Weitkamp J (1999) Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons. Micropor Mesopor Mat 30:3–41 (and references herein)

    Article  CAS  Google Scholar 

  23. Gómez-García MA, Pitchon V, Kiennemann A (2005) Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials. Environ Int 31:445–467

    Article  CAS  Google Scholar 

  24. Kato K, Nohira H, Nakanishi K, Igushi S, Kihara T, Muraki H (1993) Exhaust emission control device in internal combustion engine. European Patent 0573672 A1

    Google Scholar 

  25. Matsumoto S (1996) DeNOx catalyst for automotive lean-burn engine. Catal Today 29:43–45; Misono M, Inui T (1999) New catalytic technologies in Japan. Catal Today 51:369–375

    Google Scholar 

  26. Forzatti P, Casstoldi L, Lietti L, Nova I, Tronconi E (2007) Identification of the reaction networks of the NOx storage/reduction in lean NOx trap systems. Stud Surf Sci Catal 171:175–208

    Article  CAS  Google Scholar 

  27. Bowker M (2008) Automotive catalysis studied by surface science. Chem Soc Rev 37: 2204–2211

    Article  CAS  Google Scholar 

  28. Hodjati S, Vaezzadeh K, Petit C, Pitchon V, Kiennemann A (2000) Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas. Appl Catal B Environ 26:5–16

    Article  CAS  Google Scholar 

  29. Cremona A, Fornasari G, Livi M, Petrini G, Trifiro F, Vaccari A, Vogna E (2008) Removal NOx from lean exhaust gas by absorption on oxi-anionic materials. Catal Lett 125:386–391

    Article  CAS  Google Scholar 

  30. Fornasari G, Trifiro F, Vaccari A, Prinetto F, Ghiotti G, Centi G (2002) Novel low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds. Catal Today 75:421–429

    Article  CAS  Google Scholar 

  31. Shelef M, McCabe RW (2000) 25 years after introduction of automotive catalysts: what next? Catal Today 62:35–50

    Article  CAS  Google Scholar 

  32. Janssen F, Meijer R (1993) Quality control of DeNOx catalysts performance testing, surface analysis and characterization of DeNOx catalysts. Catal Today 16:157–185

    Article  CAS  Google Scholar 

  33. Bosch H, Janssen F (1988) Catalyst testing. Catal Today 2:403–431

    Article  Google Scholar 

  34. Busca G, Lietti L, Ramisa G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B Environ 18:1–36

    Article  CAS  Google Scholar 

  35. Nakajima F, Hamada I (1996) The state-of-the-art technology of NOx control. Catal Today 29:109–115

    Article  CAS  Google Scholar 

  36. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal Rev 50:492–581

    Article  CAS  Google Scholar 

  37. Long RQ, Yang RT (2000) Characterization of Fe-ZMS-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Catal 194:80–90

    Article  CAS  Google Scholar 

  38. Centi G, Perathoner S (1995) Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen-oxides. Appl Catal A Gen 132:179–259

    Article  CAS  Google Scholar 

  39. Komatsu T, Nunokawa M, Moon S, Takahara T, Namba S, Yashima T (1994) Kinetic studies of reduction of nitric oxide with ammonia on Cu2+-exchanged zeolites. J Catal 148:427–437

    Article  CAS  Google Scholar 

  40. Apostolescu N, Geiger B, Hizbullah K, Jan MT, Kureti S, Reichert D, Schott F, Weisweiler W (2006) Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Appl Catal B Environ 62:104–114

    Article  CAS  Google Scholar 

  41. Weisweiler W, Mallonn E, Gorke O (2003) Removal of nitrogen oxides by the NH3-SCR process: catalysts based on industrial residues containing iron(III) oxide. Chem Ing Tech 75:72–76

    Article  CAS  Google Scholar 

  42. Ramis G, Larrubia MA, Busca G (2000) On the chemistry of ammonia over oxide catalysts: fourier transform infrared study of ammonia, hydrazine and hydroxylamine adsorption over iron-titania catalyst. Top Catal 11:161–166

    Article  Google Scholar 

  43. Sullivan JA, Doherty JA (2005) NH3 and urea in the selective catalytic reduction of NOx over oxide-supported copper catalysts. Appl Catal B Environ 55:185–194

    Article  CAS  Google Scholar 

  44. Pena DA, Uphade BS, Reddy EP, Smirniotis PG (2004) Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J Phys Chem B 108:9927–9936

    Article  CAS  Google Scholar 

  45. Schneider H, Maciejewski M, Kohler K, Wokaun A, Baiker A (1995) Chromia supported on titania. Properties of different chromium oxide phases in the catalytic reduction of NO by NH3 studied by in situ diffuse reflectance FTIR spectroscopy. J Catal 157:312–320

    Article  CAS  Google Scholar 

  46. Wu Z, Jiang BO, Liu Y (2008) Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ 79:347–355

    Article  CAS  Google Scholar 

  47. Kang M, Park ED, Kim JM, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A Gen 327:261–269

    Article  CAS  Google Scholar 

  48. Shigemoto N, Moffat JB (2000) Characterization and activity of copper-on-carbon catalysts for low-temperature selective reduction of nitric oxide with ammonia. Catal Lett 69:1–10

    Article  CAS  Google Scholar 

  49. Ouzzine M, Cifredo GA, Gatica JM, Harti S, Chafik T, Vidal H (2008) Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO: effects of preparation variables. Appl Catal A Gen 342:150–158

    Article  CAS  Google Scholar 

  50. Grzybek T (2007) Layered clays as SCR DeNOx catalysts. Catal Today 119:125–132

    Article  CAS  Google Scholar 

  51. Moreno-Tost R, Oliveira ML, Eliche-Quesada D, Jiménez-Jiménez J, Jiménez-López A, Rodríguez-Castellón E (2008) Evaluation of Cu-PPHs as active catalysts for the SCR process to control NOx emissions from heavy duty diesel vehicles. Chemosphere 72:608–615

    Article  CAS  Google Scholar 

  52. Held W, Koenig A, Richter T, Puppe L (1990) Catalytic NOx reduction in net oxidizing exhaust gas. SAE Paper, Document Number: 900496

    Google Scholar 

  53. Held W, Koenig A (1987) Deutschens Patent, DE 3642018 A1

    Google Scholar 

  54. Iwamoto M, Yahiro H (1994) Novel catalytic decomposition and reduction of NO. Catal Today 22:5–18 (and references herein)

    Article  CAS  Google Scholar 

  55. Inui T, Iwamoto M, Kojo S, Shimizu S, Hirabayashi T (1994) Removal of nitric oxide on metallosilicate catalysts. Catal Today 22:41–57; Iwamoto M (1994) Preface. Catal Today 22:1–2

    Google Scholar 

  56. Tabata T, Kokitsu M, Okada O (1994) Study on patent literature of catalysts for a new NOx removal process. Catal Today 22:147–169

    Article  CAS  Google Scholar 

  57. Armor JN (1995) Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen: a review. Catal Today 26:147–158

    Article  CAS  Google Scholar 

  58. Cant NW, Liu IOY (2000) The mechanism of the selective reduction of nitrogen oxides by hydrocarbons on zeolite catalysts. Catal Today 63:133–146

    Article  CAS  Google Scholar 

  59. Iwamoto M (1994) Zeolites in environmental catalysis. Stud Surf Sci Catal 84:1395–1410

    Article  CAS  Google Scholar 

  60. Li Y, Armor JN (1993) Selective catalytic reduction of NOx with methane over metal exchanged zeolites. Appl Catal B Environ 2:239–256; Li Y, Armor JN (1994) Selective reduction of NOx by methane on co-ferrierites .1. Reaction and kinetic-studies. J Catal 150:376–387

    Google Scholar 

  61. Li Y, Battavio PB, Armor JN (1993) Effect of water-vapor on the selective reduction of NO by methane over cobalt-exchanged ZSM-5. J Catal 142:561–571

    Article  CAS  Google Scholar 

  62. Li Y, Slager TL, Armor JN (1994) Selective reduction of NOx by methane on co-ferrierites .2. Catalyst characterization. J Catal 150:388–399; Li Y, Armor JN (1993) Simultaneous, catalytic removal of nitric-oxide and nitrous-oxide. Appl Catal B Environ 3:55–60

    Google Scholar 

  63. Yokoyama C, Misono M (1994) Catalytic reduction of nitrogen monoxide by propene in the presence of oxygen over cerium ion-exchanged zeolites .1. General-characteristics of the reaction and effects of alkaline-earth metal addition. B Chem Soc Jpn 67:557–562

    Article  CAS  Google Scholar 

  64. Joyner RW, Stockenhuber M (1997) Unusual structure and stability of iron-oxygen nano-clusters in Fe-ZSM-5 catalysts. Catal Lett 45:15–19

    Article  CAS  Google Scholar 

  65. Chen HY, Sachtler WMH (1998) Promoted Fe/ZSM-5 catalysts prepared by sublimation: De-NOx activity and durability in H2O-rich streams. Catal Lett 50:125–130

    Article  CAS  Google Scholar 

  66. Hirabayashi H, Yahiro H, Mizuno N, Iwamoto M (1992) High catalytic activity of platinum-ZSM-5 zeolite below 500-K in water-vapor for reduction of nitrogen monoxide. Chem Lett 2235–2236

    Google Scholar 

  67. Iwamoto M, Yahiro H, Shin HK, Watanabe M, Guo I, Konno M, Chikahisa T, Murayama T (1994) Performance and durability of Pt-MFI zeolite catalyst for selective reduction of nitrogen monoxide in actual diesel-engine exhaust. Appl Catal B Environ 5:L1–L6

    Article  CAS  Google Scholar 

  68. Choi BC, Foster DE (2005) State-of-the-art of de-NOx techonology using zeolite catalysts in automobile engines. J Ind Eng Chem 11:1–9

    Article  CAS  Google Scholar 

  69. Wichterlova B (2004) Structural analysis of potential active sites in metallo-zeolites for selective catalytic reduction of NOx. An attempt for the structure versus activity relationship. Top Catal 28:131–140

    Article  CAS  Google Scholar 

  70. Salgado ALSM, Passos FB, Schmal M (2003) NO reduction by ethanol on Pd and Mo catalysts supported on HZSM-5. Catal Today 85:23–29

    Article  CAS  Google Scholar 

  71. Kikuchi E, Ogura M, Aratani N, Sugiura Y, Hiromoto S, Yogo K (1996) Promotive effect of additives to In/H-ZSM-5 catalyst for selective reduction of nitric oxide with methane in the presence of water vapour. Catal Today 27:35–40

    Article  CAS  Google Scholar 

  72. Ogura M, Kage S, Hayashi M, Matsukata M, Kikuchi E (2000) Remarkable enhancement in durability of Pd/H-ZSM-5 zeolite catalysts for CH4-SCR. Appl Catal B-Environ 27: L213–L216

    Article  CAS  Google Scholar 

  73. Shimizu KI, Satsuma A, Hattori T (2000) Metal oxide catalysts for selective reduction of NOx by hydrocarbons: toward molecular basis for catalyst design. Catal Surv Jpn 4:115–123 (and references herein)

    Article  CAS  Google Scholar 

  74. Hamada H (1994) Selective reduction of NO by hydrocarbons and oxygenated hydrocarbons over metal oxide catalysts. Catal Today 22:21–40

    Article  CAS  Google Scholar 

  75. Kung MC, Kung HH (2004) Selective lean NOx reduction over metal oxides. Top Catal 28:105–110

    Article  CAS  Google Scholar 

  76. Bethke KA, Kung MC, Yang B, Shah M, Alt D, Li C, Kung HH (1995) Metal oxide catalysts for lean NOx reduction. Catal Today 26:169–183

    Article  CAS  Google Scholar 

  77. Kintaichi Y, Hamada H, Tabata M, Sasaki M, Ito T (1990) Selective reduction of nitrogen oxides with hydrocarbons over solid acid catalysts in oxygen-rich atmospheres. Catal Lett 6:239–244

    Article  CAS  Google Scholar 

  78. Hamada H, Kintaichi Y, Tabata M, Sasaki M, Ito T (1991) Sulfate-promoted metal oxide catalysts for the selective reduction of nitrogen monoxide by propane in oxygen-rich atmosphere. Chem Lett 20:2179–2182

    Article  Google Scholar 

  79. Bethke KA, Alt D, Kung MC (1994) NO reduction by hydrocarbons in an oxidizing atmosphere over transition metal-zirconium mixed oxides. Catal Lett 25:37–48

    Article  CAS  Google Scholar 

  80. Hamada H, Kintaichi Y, Sasaki M, Ito T, Tabata M (1991) Transition metal-promoted silica and alumina catalysts for the selective reduction of nitrogen monoxide with propane. Appl Catal 75:L1–L8

    Article  CAS  Google Scholar 

  81. Amin NSA, Tan EF, Manan ZA (2003) Selective reduction of NOx with C3H6 over Cu and Cr promoted CeO2 catalysts. Appl Catal B Environ 43:57–69

    Article  CAS  Google Scholar 

  82. Torikai Y, Yahiro H, Mizuno N, Iwamoto M (1991) Enhancement of catalytic activity of alumina by copper addition for selective reduction of nitrogen monoxide by ethene in oxidizing atmosphere. Catal Lett 9:91–95

    Article  CAS  Google Scholar 

  83. Iliopoulou EF, Evdou AP, Lemonidou AA, Vasalos IA (2004) Ag/alumina catalysts for the selective catalytic reduction of NOx using various reductants. Appl Catal A Gen 274: 179–189

    Article  CAS  Google Scholar 

  84. Miyadera T (1993) Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen containing organic compounds. Appl Catal B Environ 2:199–205

    Article  CAS  Google Scholar 

  85. Tabata M, Hamada H, Suganuma F, Yoshinari T, Tsuchida H, Kintaichi Y, Sasaki M, Ito T (1994) Promotive effect of Sn on the catalytic activity of Al2O3 for the selective reduction of NO by methanol. Catal Lett 25:55–60

    Article  CAS  Google Scholar 

  86. Ukisu Y, Sato S, Abe A, Yoshida K (1993) Possible role of isocyanate species in NOx reduction by hydrocarbons over copper-containing catalysts. Appl Catal B Environ 2:147–152

    Article  CAS  Google Scholar 

  87. Kotsifa A, Kondarides DI, Verykios XE (2008) A comparative study of the selective catalytic reduction of NO by propylene over supported Pt and Rh catalysts. Appl Catal B Environ 80:260–270

    Article  CAS  Google Scholar 

  88. Bamwenda GR, Ogata A, Obuchi A, Oi J, Mizuno K, Skrzypek J (1995) Selective reduction of nitric oxide with propene over platinum-group based catalysts: studies of surface species and catalytic activity. Appl Catal B Environ 6:311–323

    Article  CAS  Google Scholar 

  89. Obuchi A, Ohl A, Nakamura M, Ogata A, Mizuno K, Ohuchi H (1993) Performance of platinum-group metal catalysts for the selective reduction of nitrogen oxides by hydrocarbons. Appl Catal B Environ 2:71–80

    Article  CAS  Google Scholar 

  90. Burch R, Millington PJ, Walker AP (1994) Mechanism of the selective reduction of nitrogen monoxide on platinum-based catalysts in the presence of excess oxygen. Appl Catal B Environ 4:65–94

    Article  CAS  Google Scholar 

  91. Burch R, Ottery D (1996) Selective catalytic reduction of NOx by hydrocarbons on Pt/Al2O3 catalysts at low temperatures without the formation of N2O. Appl Catal B Environ 9: L19–L24

    CAS  Google Scholar 

  92. Burch R, Millington PJ (1996) Selective reduction of NOx by hydrocarbons in excess oxygen by alumina- and silica-supported catalysts. Catal Today 29:37–42

    Article  CAS  Google Scholar 

  93. Obuchi A, Ogata A, Takahashi H, Oi J, Bamwenda GR, Mizuno K (1996) Selective reduction of nitrogen oxides with various organic substances on precious metal catalysts under a high GHSV condition. Catal Today 29:103–107

    Article  CAS  Google Scholar 

  94. Pietraszek A, Da Costa P, Marques R, Kornelak P, Hansen TW, Camra J, Najbar M (2007) The effect of the Rh–Al, Pt–Al and Pt–Rh–Al surface alloys on NO conversion to N2 on alumina supported Rh, Pt and Pt–Rh catalysts. Catal Today 119:187–193

    Article  CAS  Google Scholar 

  95. Denton P, Giroir-Fendler A, Praliaud H, Primet M (2000) Role of the nature of the support (alumina or silica), of the support porosity, and of the Pt dispersion in the selective reduction of NO by C3H6 under lean-burn conditions. J Catal 189:410–420

    Article  CAS  Google Scholar 

  96. Kotsifa A, Kondarides DI, Verykios XE (2007) Comparative study of the chemisorptive and catalytic properties of supported Pt catalysts related to the selective catalytic reduction of NO by propylene. Appl Catal B Environ 72:136–148

    Article  CAS  Google Scholar 

  97. Adamowska M, Muller S, Da Costa P, Krzton A, Burg P (2007) Correlation between the surface properties and DeNOx activity of ceria-zirconia catalysts. Appl Catal B Environ 74:278–289

    Article  CAS  Google Scholar 

  98. Thomas C, Gorce O, Fontaine C, Krafft JM, Villain F, Djéga-Mariadassou G (2006) On the promotional effect of Pd on the propene-assisted decomposition of NO on chlorinated Ce0.68Zr0.32O2. Appl Catal B Environ 63:201–214

    Article  CAS  Google Scholar 

  99. Liotta LF, Longo A, Macaluso A, Martorana A, Pantaleo G, Venezia AM, Deganello G (2004) Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations. Appl Catal B Environ 48:133–149

    Article  CAS  Google Scholar 

  100. Liu Z, Wang K, Zhang X, Wang J, Cao H, Gong M, Chen Y (2009) Study on methane selective catalytic reduction of NO on Pt/Ce0.67Zr0.33O2 and its application. J Nat Gas Chem 18:66–70

    Article  CAS  Google Scholar 

  101. Adamowska M, Krztoń A, Najbar M, Camra J, Djéga-Mariadassou G, Da Costa P (2009) Ceria–zirconia-supported rhodium catalyst for NOx reduction from coal combustion flue gases. Appl Catal B Environ 90:535–544

    Article  CAS  Google Scholar 

  102. Twigg MV (2007) Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B Environ 70:2–15

    Article  CAS  Google Scholar 

  103. Rewick RT, Wise H (1975) Reduction of nitric-oxide by carbon-monoxide on copper catalysts. J Catal 40:301–311

    Article  CAS  Google Scholar 

  104. London JW, Bell AT (1973) Simultaneous infrared and kinetic study of reduction of nitric-oxide by carbon-monoxide over copper oxide. J Catal 31:96–109

    Article  CAS  Google Scholar 

  105. Chen JC, Fang GC, Shi SS (2009) Activities of different metal oxide catalysts on NO reduction and CO oxidation. Int J Environ Pollut 37:86–96

    Article  Google Scholar 

  106. Xiaoyuan J, Huijuan L, Xiaoming Z (2008) Catalytic activity of CuO-loaded TiO2/gamma-Al2O3 for NO reduction by CO. J Mat Sci 43:6505–6512

    Article  CAS  Google Scholar 

  107. Bellido JDA, Assaf EM (2009) Reduction of NO by CO on Cu/ZrO2/Al2O3 catalysts: characterization and catalytic activities. Fuel 88:1673–1679

    Article  CAS  Google Scholar 

  108. Khristova M, Ivanov B, Spassova I, Spassov T (2007) NO reduction with co on copper and ceria oxides supported on alumina. Catal Lett 119:79–86

    Article  CAS  Google Scholar 

  109. Cheng X, Zhu A, Zhang Y, Wang Y, Au CT, Shi C (2009) A combined DRIFTS and MS study on reaction mechanism of NO reduction by CO over NiO/CeO2 catalyst. Appl Catal B Environ 90:395–404

    Article  CAS  Google Scholar 

  110. Hu Y, Griffiths K, Norton PR (2009) Surface science studies of selective catalytic reduction of NO: progress in the last 10 years. Surf Sci 603:1740–1750 (and references herein)

    Article  CAS  Google Scholar 

  111. Shelef M, Graham GW (1994) Why rhodium in automotive Three-Way Catalysts? Catal Rev 36:433–457

    Article  CAS  Google Scholar 

  112. Busca G, Larrubia MA, Arrighi L, Ramis G (2005) Catalytic abatement of NOx: chemical and mechanistic aspects. Catal Today 107–108:139–148

    Google Scholar 

  113. Fernández-García M, Martínez-Arias A, Iglesias-Juez A, Hungría AB, Anderson JA, Conesa JC, Soria J (2003) Behavior of bimetallic Pd-Cr/Al2O3 and Pd-Cr/(Ce,Zr)Ox/Al2O3 catalysts for CO and NO elimination. J Catal 214:220–233

    Article  CAS  Google Scholar 

  114. Hungría AB, Fernández-García M, Anderson JA, Martínez-Arias A (2005) The effect of Ni in Pd–Ni/(Ce,Zr)Ox/Al2O3 catalysts used for stoichiometric CO and NO elimination. Part 2: catalytic activity and in situ spectroscopic studies. J Catal 235:262–271

    Article  CAS  Google Scholar 

  115. Herman GS, Peden CHF, Schmieg SJ, Belton DN (1999) A comparison of the NO–CO reaction over Rh(100), Rh(110) and Rh(111). Catal Lett 62:131–138

    Article  CAS  Google Scholar 

  116. Alas SJ, Rojas F, Kornhauser I, Zgrablich G (2006) Dynamic Monte Carlo simulation of oscillations and pattern formation during the NO + CO reaction on the Pt(100) surface. J Mol Catal A-Chem 244:183–192

    Article  CAS  Google Scholar 

  117. Ward TR, Alemany P, Hoffman R (1993) Adhesion of rhodium, palladium, and platinum to alumina and the reduction of nitric oxide on the resulting surfaces: a theoretical analysis. J Phys Chem 97:7691–7699

    Article  CAS  Google Scholar 

  118. Winter ERS (1971) The catalytic decomposition of nitric oxide by metallic oxides. J Catal 22:158–170

    Article  CAS  Google Scholar 

  119. Haneda M, Nakamura I, Fujitani T, Hamada H (2005) Catalytic active site for NO decomposition elucidated by surface science and real catalyst. Catal Surv Asia 9:207–215

    Article  CAS  Google Scholar 

  120. Haneda M, Kintaichi Y, Bion N, Hamada H (2003) Alkali metal-doped cobalt oxide catalysts for NO decomposition. Appl Catal B Environ 46:473–482

    Article  CAS  Google Scholar 

  121. Iwamoto S, Takahashi R, Inoue M (2007) Direct decomposition of nitric oxide over Ba catalysts supported on CeO2-based mixed oxides. Appl Catal B Environ 70:146–150

    Article  CAS  Google Scholar 

  122. Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya S, Kagawa S (1986) Copper (II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. J Chem Soc Chem Comm 11:1272–1273; Iwamoto M, Yahiro H, Tanda K, Mizuno N, Mine Y, Kagawa S (1991) Removal of nitrogen monoxide through a novel catalytic process. 1. Decomposition on excessively copper–ion-exchanged ZSM-5 zeolites. J Phys Chem 95:3727–3730

    Google Scholar 

  123. Kustova MY, Rasmussen SB, Kustov AL, Christensen CH (2006) Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: improved performance with hierarchical zeolites. Appl Catal B Environ 67:60–67

    Article  CAS  Google Scholar 

  124. Lee DK (2006) Thermodynamic features of the Cu-ZSM-5 catalyzed NO decomposition reaction. Korean J Chem Eng 23:547–554

    Article  CAS  Google Scholar 

  125. Murray HH (1995) Clays in industry and the environment. In: Churchman GJ, Fritzpatrick RW, Egleton RA (eds) Clays controlling the environment, 10th International Clay Conference. CSIRO, Melbourne

    Google Scholar 

  126. Vaughan DEW (1988) Pillared clays – a historical perspective. Catal Today 2:187–198

    Article  CAS  Google Scholar 

  127. Burch R (1988) Pillared clays. Catal Today 2:185–367

    Article  Google Scholar 

  128. Pinnavaia TJ (1983) Intercalated clay catalysts. Science 220:365–371

    Article  CAS  Google Scholar 

  129. Figueras F (1988) Pillared clay as catalysts. Catal Rev 30:457–499

    Article  CAS  Google Scholar 

  130. Gil A, Korili SA, Vicente MA (2008) Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catal Rev 50:153–221

    Article  CAS  Google Scholar 

  131. Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14:161–198

    Article  CAS  Google Scholar 

  132. Centi G, Perathoner S (2008) Catalysis by layered materials: a review. Micropor Mesopor Mat 107:3–15

    Article  CAS  Google Scholar 

  133. Yang RT, Chen JP, Kikkinides ES, Cheng LS, Cichanowicz JE (1992) Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide with ammonia. Ind Eng Chem Res 31:1440–1445

    Article  CAS  Google Scholar 

  134. Yang RT, Cichanowicz JE (1995) Pillared interlayered clay catalysts for the selective reduction of nitrogen oxides with ammonia. US Patent 5415850

    Google Scholar 

  135. Chen JP, Hausladen MC, Yang RT (1995) Delaminated Fe2O3–pillared clay: its preparation, characterization, and activities for selective catalytic reduction of NO by NH3. J Catal 151:135–146

    Article  CAS  Google Scholar 

  136. Pinnavaia TJ, Tzou MS, Landau SD, Raythatha RH (1984) On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminium. J Mol Catal 27:195–212

    Article  CAS  Google Scholar 

  137. Occelli ML, Landau SD, Pinnavaia TJ (1987) Physicochemical properties of a delaminated clay cracking catalyst. J Catal 104:331–338; Occelli ML (1988) Surface properties and cracking activity of delaminated clay catalysts. Catal Today 2:339–355

    Google Scholar 

  138. Chmielarz L, Kuśtrowski P, Zbroja M, Asocha W, Dziembaj R (2004) Selective reduction of NO with NH3 over pillared clays modified with transition metals. Catal Today 90:43–49

    Article  CAS  Google Scholar 

  139. del Castillo HL, Gil A, Grange P (1996) Selective catalytic reduction of NO by NH3 on titanium pillared montmorillonite. Catal Lett 36:237–239

    Article  CAS  Google Scholar 

  140. Yang RT, Li W (1995) Ion-exchanged pillared clays: a new class of catalysts for selective catalytic reduction of NO by hydrocarbons and by ammonia. J Catal 155:414–417

    Article  CAS  Google Scholar 

  141. Perathoner S, Vaccari A (1997) Catalysts based on pillared interlayered clays for the selective catalytic reduction of NO. Clay Miner 32:123–134

    Article  CAS  Google Scholar 

  142. Long RQ, Yang RT, Zammit KD (2003) Superior pillared clay catalysts for selective reduction of nitrogen oxides for power plant emission control. US patent 6,521,559 B1

    Google Scholar 

  143. Long RQ, Yang RT (1999) Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts. J Catal 186:254–268 (and references herein)

    Article  CAS  Google Scholar 

  144. Long RQ, Yang RT (1999) Acid- and base-treated Fe3+-TiO2-pillared clays for selective catalytic reduction of NO by NH3. Catal Lett 59:39–44

    Article  CAS  Google Scholar 

  145. Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey RJ (1995) Adsorption, activation, and oxidation of ammonia over SCR catalysts. J Catal 157:523–535

    Article  CAS  Google Scholar 

  146. Bergaya F, Aouad A, Mandalia T (2006) Pillared clays and clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments in clay science, vol 1. Elsevier, Amsterdam

    Google Scholar 

  147. Vicente MA, Bañares-Muñoz MA, Toranzo R, Gandía LM, Gil A (2001) Influence of the Ti precursor on properties of Ti-pillared smectites. Clay Miner 36:125–138

    Article  CAS  Google Scholar 

  148. He MY, Liu Z, Min E (1988) Acidic and hydrocarbon catalytic properties of pillared clay. Catal Today 2:321–338

    Article  CAS  Google Scholar 

  149. Komadel P, Madejova J (2006) Acid activation of clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments in clay science, vol 1. Elsevier, Amsterdam

    Google Scholar 

  150. Vicente MA, Suárez M, Bañares-Muñoz MA, López González JD (1996) Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates. Spectrochimic Acta A 52:1685–1694

    Article  Google Scholar 

  151. Long RQ, Yang RT (2000) FTIR and kinetic studies of the mechanism of Fe3+-exchanged TiO2-pillared clay catalyst for selective catalytic reduction of NO with ammonia. J Catal 190:22–31

    Article  CAS  Google Scholar 

  152. Long RQ, Yang RT (2000) The promoting role of rare earth oxides on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of nitric oxide by ammonia. Appl Catal B Environ 27:87–95

    Article  CAS  Google Scholar 

  153. Chmielarz L, Kuśtrowski P, Zbroja M, Rafalska-Asocha A, Dudek B, Dziembaj R (2003) SCR of NO by NH3 on alumina or titania-pillared montmorillonite various modified with Cu or Co: part I. General characterization and catalysts screening. Appl Catal B Environ 45:103–116

    Article  CAS  Google Scholar 

  154. Chmielarz L, Kuśtrowski P, Zbroja M, Gil-Knap B, Datka J, Dziembaj R (2004) SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co. Part II. Temperature programmed studies. Appl Catal B Environ 53:47–61

    Article  CAS  Google Scholar 

  155. Chmielarz L, Kuśtrowski P, Michalik M, Dudek B, Czajka M, Dziembaj R (2007) Phlogophites intercalated with Al2O3 pillars and modified with transition metals as catalysts of the DeNOx process. React Kinet Catal Lett 91:369–378

    Article  CAS  Google Scholar 

  156. Chmielarz L, Kuśtrowski P, Michalik M, Dudek B, Piwowarska Z, Dziembaj R (2008) Vermiculites intercalated with Al2O3 pillars and modified with transition metals as catalysts of DeNOx process. Catal Today 137:242–246

    Article  CAS  Google Scholar 

  157. Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay Science. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments in clay science, vol 1. Elsevier, Amsterdam

    Google Scholar 

  158. Brigatti MF, Galan E, Theng EKG (2006) Structures and mineralogy of clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments in clay science, vol 1. Elsevier, Amsterdam

    Google Scholar 

  159. Newman ACD, Brown G (1987) The chemical constitution of clays. In: Newman ACD (ed) Chemistry of clays and clay minerals. Mineralogical Society Monograh, London

    Google Scholar 

  160. Cheng LS, Yang RT, Chen N (1996) Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric with ammonia. J Catal 164:70–81

    Article  CAS  Google Scholar 

  161. Olszewska D (2006) Ammonia and water sorption properties of the mineral-layered nanomaterials used as the catalysts for NOx removal from exhaust gases. Catal Today 114:326–332

    Article  CAS  Google Scholar 

  162. Long RQ, Yang RT (2000) Selective catalytic reduction of NO with ammonia over V2O5 doped TiO2 pillared clay catalysts. Appl Catal B Environ 24:13–21

    Article  CAS  Google Scholar 

  163. Long RQ, Yang RT (2000) Catalytic performance and characterization of VO2+-exchanged Titania-pillared clays for selective catalytic reduction of nitric oxide with ammonia. J Catal 196:73–85

    Article  CAS  Google Scholar 

  164. Boudali LK, Ghorbel A, Grange P, Figueras F (2005) Selective catalytic reduction of NO with ammonia over V2O5 supported sulfated titanium-pillared clay catalysts: influence of V2O5 content. Appl Catal B-Environ 59:105–111

    Article  CAS  Google Scholar 

  165. Arfaoui J, Boudali LK, Ghorbel A, Delahay G (2009) Effect of vanadium on the behaviour of unsulfated and sulfated Ti-pillared clay catalysts in the SCR of NO by NH3. Catal Today 142:234–238

    Article  CAS  Google Scholar 

  166. Boudali LK, Ghorbel A, Grange P (2006) SCR of NO by NH3 over V2O5 supported sulfated Ti-pillared clay: reactivity and reducibility of catalysts. Appl Catal A Gen 305:7–14

    Article  CAS  Google Scholar 

  167. Arfaoui J, Boudali LK, Ghorbel A, Delahay G (2008) Influence of the nature of titanium source and of vanadia content on the properties of titanium-pillared montmorillonite. J Phys Chem Solids 69:1121–1124

    Article  CAS  Google Scholar 

  168. Grzybek T, Klinik J, Krzyzanowski A, Papp H (2002) Carbon-covered clays as catalytic supports. 1. Iron-promoted samples as DeNOx catalysts Catal Lett 81:193–197

    Article  CAS  Google Scholar 

  169. Chmielarz L, Dziembaj R, Grzybek T, Klinik J, Łojewski T, Olszewska D, Papp H (2000) Pillared smectite modified with carbon and manganese as catalyst for SCR of NOx with NH3. Part I. General characterization and catalyst screening. Catal Lett 68:95–100

    Article  CAS  Google Scholar 

  170. Chmielarz L, Dziembaj R, Grzybek T, Klinik J, Łojewski T, Olszewska D, Wegrzyn A (2000) Pillared smectite modified with carbon and manganese as catalyst for SCR of NOx with NH3. Part II. Temperature-programmed studies. Catal Lett 70:51–56; Chmielarz L, Dziembaj R, Łojewski T, Wegrzyn A, Grzybek T, Klinik J, Olszewska D (2001) Effect of water vapour and SO2 addition on stability of zirconia-pillared montmorillonites in selective catalytic reduction of NO with ammonia. Solid State Ionics 141–142:715–719

    Google Scholar 

  171. Grzybek T, Motak M, Papp H (2004) The structure of prospective DeNOx catalysts based on carbon–montmorillonite nanocomposites. Catal Today 90:69–76

    Article  CAS  Google Scholar 

  172. Motak M (2008) Montmorillonites modified with polymer and promoted with copper as DeNOx catalysts. Catal Today 137:247–252

    Article  CAS  Google Scholar 

  173. Sato K, Fujimoto T, Kanai S, Kintaichi Y, Inaba M, Haneda M, Hamada H (1997) Catalytic performance of silver ion-exchanged saponite for the selective reduction of nitrogen monoxide in the presence of excess oxygen. Appl Catal B Environ 13:27–33

    Article  CAS  Google Scholar 

  174. Yang RT, Tharappiwattananon N, Long RQ (1998) Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen. Appl Catal B Environ 19:289–304

    Article  CAS  Google Scholar 

  175. Li W, Sirilumpen M, Yang RT (1997) Selective catalytic reduction of nitric oxide by ethylene in the presence of oxygen over Cu2+ ion-exchanged pillared clays. Appl Catal B Environ 11:347–363

    Article  CAS  Google Scholar 

  176. Chmielarz L, Zbroja M, Kuśtrowski P, Dudek B, Rafalska-Asocha A, Dziembaj R (2004) Pillared montmorillonites modified with silver – temperature programmed desorption studies. J Therm Anal Calorim 77:115–123

    Article  CAS  Google Scholar 

  177. Valverde JL, de Lucas A, Sánchez P, Dorado F, Romero A (2003) Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene. Appl Catal B Environ 43:43–56

    Article  CAS  Google Scholar 

  178. Valverde JL, de Lucas A, Dorado F, Romero A, García PB (2005) Influence of the operating parameters on the selective catalytic reduction of NO with hydrocarbons using Cu-Ion-Exchanged Titanium-Pillared interlayer clays (Ti-PILCs). Ind Eng Chem Res 44:2955–2965

    Article  CAS  Google Scholar 

  179. Valverde JL, de Lucas A, Dorado F, Romero A, García PB (2005) Study by in situ FTIR of the SCR of NO by propene on Cu2+ion-exchanged Ti-PILC. J Mol Catal A Chem 230:23–28

    Article  CAS  Google Scholar 

  180. Dorado F, de Lucas A, García PB, Romero A, Valverde JL (2006) Copper ion-exchanged and impregnated Fe-pillared clays – study of the influence of the synthesis conditions on the activity for the selective catalytic reduction of NO with C3H6. Appl Catal A Gen 305: 189–196

    Article  CAS  Google Scholar 

  181. Dorado F, de Lucas A, García PB, Valverde JL, Romero A (2006) Preparation of Cu-ion-exchanged Fe-PILCs for the SCR of NO by propene. Appl Catal B Environ 65:5–184

    Article  CAS  Google Scholar 

  182. Lin Q, Hao J, Li J, Ma Z, Lin W (2007) Copper-impregnated Al–Ce-pillared clay for selective catalytic reduction of NO by C3H6. Catal Today 126:351–358

    Article  CAS  Google Scholar 

  183. Koch D, Kesore K, Tomlinson AAG (2009) Methods for the production of catalytically active layer silicates. US Patent 7476639–B2

    Google Scholar 

  184. Konin GA, Ilichev AN, Matyshak VA, Khomenko TI, Korchak VN, Tretyakov VF, Doronin VP, Bunina RV, Alikina GM, Kuznetsova TG, Paukshtis EA, Fenelonov VB, Zaikovskii VI, Ivanova AS, Beloshapkin SA, Rozovskii AY, Tretyakov VF, Ross JRH, Breen JP (2001) Cu, Co, Ag-containing pillared clays as catalysts for the selective reduction of NOx by hydrocarbons in an excess of oxygen. Top Catal 16/17:193–197

    Article  CAS  Google Scholar 

  185. Matyshak VA, Tretyakov VF, Chernyshev KA, Burdeinaya TN, Korchak VN, Sadykov VA (2006) Reaction paths of the formation and consumption of nitroorganic complex intermediates in the selective catalytic reduction of nitrogen oxides with propylene on zirconia-pillared clays according to in situ spectroscopic data. Kinet Catal 47:747–755

    Article  CAS  Google Scholar 

  186. Tretyakov VF, Kuznetsova TG, Doronin VP, Bunina RV, Alikina GM, Batuev L, Matyshak VA, Rozovskii AY, Tretyakov VF, Burdeinaya TN, Lunin V, Ross JRH (2006) NOx SCR by decane and propylene on Pt + Cu/Zr-pillared clays in realistic feeds: performance and mechanistic features versus structural specificity of nanosized zirconia pillars. Catal Today 114:13–22

    Article  CAS  Google Scholar 

  187. Matyshak VA, Tretyakov VF, Burdeinaya TN, Chernyshov KA, Sadykov VA, Sil’chenkova ON, Korchak VN (2007) Effect of the modification of ZrO2-Containing pillared clay with Pt and Cu atoms on the properties of inorganic complex intermediates in the selective catalytic reduction of nitrogen oxides with propylene according to in situ IR-spectroscopic data. Kinet Catal 48:74–83

    Article  CAS  Google Scholar 

  188. Belver C, Bañares-Muñoz MA, Vicente MA (2004) Fe-saponite pillared and impregnated catalysts I. Preparation and characterization. Appl Catal B Environ 50:101–112

    Article  CAS  Google Scholar 

  189. Belver C, Vicente MA, Fernández-García M, Martínez-Arias A (2004) Supported catalysts for DeNOx reaction based on iron clays. J Mol Catal A Chem 219:309–313

    Article  CAS  Google Scholar 

  190. Mata G, Trujillano R, Vicente MA, Belver C, Fernández-García M, Korili SA, Gil A (2007) Chromium–saponite clay catalysts: preparation, characterization and catalytic performance in propene oxidation. Appl Catal A Gen 327:1–12

    Article  CAS  Google Scholar 

  191. Belver C, Vicente MA, Martínez-Arias A, Fernández-García M (2004) Fe-saponite pillared and impregnated catalysts II. Nature of the iron species active for the reduction of NOx with propene. Appl Catal B Environ 50:227–234

    Article  CAS  Google Scholar 

  192. Belver C, Mata G, Trujillano R, Vicente MA (2008) Ni/pillared clays as catalysts for the selective catalytic reduction of nitrogen oxides by propene. Catal Lett 123:32–40

    Article  CAS  Google Scholar 

  193. Bahamonde A, Mohino F, Rebollar M, Yates M, Avila P, Mendioroz S (2001) Pillared clay and zirconia-based monolithic catalysts for selective catalytic reduction of nitric oxide by methane. Catal Today 69:233–239

    Article  CAS  Google Scholar 

  194. Mohino F, Avila P, Salerno P, Bahamonde A, Mendioroz S (2005) PILC-based monolithic catalysts for the selective catalytic reduction of nitrogen oxides by methane in oxygen excess. Catal Today 107–108:192–199

    Article  CAS  Google Scholar 

  195. Mendioroz S, Martín-Rojo AB, Rivera F, Martín JC, Bahamonde A, Yates M (2006) Selective catalytic reduction of NOx by methane in excess oxygen over Rh based aluminium pillared clays. Appl Catal B Environ 64:161–170

    Article  CAS  Google Scholar 

  196. Philippopoulos C, Gangas N, Papayannakos N (1996) Catalytic reduction of NO with CO over an Rh/Al pillared clay catalyst. J Mater Sci Lett 15:1940–1944

    Article  CAS  Google Scholar 

  197. Morfis S, Philippopoulos C, Papayannakos N (1998) Application of Al-pillared clay minerals as catalytic carriers for the reaction of NO with CO. Appl Clay Sci 13: 203–212

    Article  CAS  Google Scholar 

  198. Qi G, Yang RT, Thompson LT (2004) Catalytic reduction of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen by Pd supported on pillared clays. Appl Catal A Gen 259:261–267

    Article  CAS  Google Scholar 

  199. Sirilumpen M, Yang RT, Tharappiwattananon N (1999) Selective catalytic reduction of NO with hydrocarbon on Cu2+-exchanged pillared clay: an IR study of the NO decomposition mechanism. J Mol Catal A Chem 137:273–286

    Article  CAS  Google Scholar 

  200. Rives V, Ulibarri MA (1999) Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord Chem Rev 181:61–120

    Article  CAS  Google Scholar 

  201. Rives V (2002) Characterisation of layered double hydroxides and their decomposition products. Mater Chem Phys 75:19–25

    Article  CAS  Google Scholar 

  202. Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41:53–71

    Article  CAS  Google Scholar 

  203. Kannan S (2006) Catalytic applications of hydrotalcite-like materials and their derived forms. Catal Surv Asia 10:117–137

    Article  CAS  Google Scholar 

  204. Tichit D, Gerardin C, Durand R, Coq B (2006) Layered double hydroxides: precursors for multifunctional catalysts. Top Catal 39:89–96

    Article  CAS  Google Scholar 

  205. Mulukutla RS, Detellier C (1996) Thermally activated Mg, Fe layered double hydroxide as reductant for nitric oxide. J Mater Sci Lett 15:797–799

    Article  CAS  Google Scholar 

  206. Mulukutla RS, Detellier C (1997) Use of a calcined Ni(II), Al(III) layered double hydroxide for the reduction of nitric oxide in the presence of methane and oxygen. J Mater Sci Lett 16:752–754

    Article  CAS  Google Scholar 

  207. Montanari B, Vaccari A, Gazzano M, Käfher P, Papp H, Pasel J, Dziembaj R, Makowski W, Lojewski T (1997) Characterization and activity of novel copper-containing catalysts for selective catalytic reduction of NO with NH3. Appl Catal B Environ 13:205–217

    Article  CAS  Google Scholar 

  208. Centi G, Fornasari G, Gobbi C, Livi M, Trifirò F, Vaccari A (2002) NOx storage-reduction catalysts based on hydrotalcite: effect of Cu in promoting resistance to deactivation. Catal Today 73:287–296

    Article  CAS  Google Scholar 

  209. Basile F, Fornasari G, Livi M, Tinti F, Trifirò F, Vaccari A (2004) Performance of new Pt and Pt-Cu on hydrotalcite-derived materials for NOx storage/reduction. Top Catal 30:223–227

    Article  Google Scholar 

  210. Alini S, Bologna A, Basile F, Montanari T, Vaccari A (2003) Catalytic decomposition of nitrous oxide involves contacting gaseous mixture containing nitrous oxide with catalytic system obtained by calcination and reduction with hydrogen of hydrotalcite compound. Patent number: EP1262224-A1; EP1262224-B1; DE60101461-E

    Google Scholar 

  211. Yu JJ, Cheng J, Ma CY, Wang HL, Li LD, Hao ZP, Xu ZP (2009) NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds. J Colloid Interf Sci 333:423–430

    Article  CAS  Google Scholar 

  212. Yu JJ, Wang XP, Li LD, Hao ZP, Xu ZP, Lu GQ (2007) Novel multi-functional mixed-oxide catalysts for effective NOx capture, decomposition, and reduction. Adv Funct Mater 17:3598–3606

    Article  CAS  Google Scholar 

  213. Yu JJ, Tao YX, Liu CC, Hao ZP, Xu ZP (2007) Environmental novel NO trapping catalysts derived from Co-Mg/X-Al (X=Fe, Mn, Zr, La) hydrotalcite-like compounds. Sci Tech 41:1399–1404

    Article  CAS  Google Scholar 

  214. Galarneau A, Barodawalla A, Pinnavaia TJ (2002) Porous clay heterostructures formed by gallery-templated synthesis. Nature 374:529–531

    Article  Google Scholar 

  215. Polverejan M, Pauly TR, Pinnavaia TJ (2000) Acidic porous clay heterostructures (PCH): intragallery assembly of mesoporous silica in synthetic saponite clays. Chem Mater 12:2698–2704

    Article  CAS  Google Scholar 

  216. Galarneau A, Barodawalla A, Pinnavaia TJ (1997) Porous clay heterostructures (PCH) as acid catalysts. Chem Commun 1661–1662

    Google Scholar 

  217. Chmielarz L, Kuśtrowski P, Piwowarska Z, Gil B, Michalik M (2009) Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNO x process. Appl Catal B Environ 88:331–340

    Article  CAS  Google Scholar 

  218. Chmielarz L, Kuśtrowski P, Dziembaj R, Cool P, Vansant EF (2007) Selective catalytic reduction of NO with ammonia over porous clay heterostructures modified with copper and iron species. Catal Today 119:181–186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of this work is provided by the Spanish Ministry of Science, MAT2007-66439-C02-01. The author is indebted to the Spanish Research Council (CSIC) and the European Social Fund for a postdoctoral contract, JAE-Doc, in the Materials Science Institute of Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Belver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Belver, C. (2010). Clay Materials for Selective Catalytic Reduction of NO x . In: Gil, A., Korili, S., Trujillano, R., Vicente, M. (eds) Pillared Clays and Related Catalysts. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6670-4_10

Download citation

Publish with us

Policies and ethics