Exudativory and Primate Skull Form

  • Matthew J. Ravosa
  • Russell T. Hogg
  • Christopher J. Vinyard
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


We review comparative and experimental research ­regarding the musculoskeletal correlates of exudativory in primates, providing novel data on: cranial ontogeny and scaling in galagos, macroscale tests of symphyseal joint performance in platyrrhines, and histology of enamel prism organization in the anterior dentition of callitrichids.

In galagos, derived configurations of jaw-joint position and jaw-muscle mechanical advantage in Otolemur and Euoticus appear to facilitate increased gape during scraping or gouging behaviors. Due to the lack of greater robusticity of load-resisting mandibular elements in Otolemur and Euoticus, there is little evidence to suggest that exudativory in galagos results in higher masticatory stresses. Compared to tamarins such as Saguinus, the marmoset Callithrix has canine enamel with a much higher degree of decussation. However, simulated jaw loading suggests a reduced ability to withstand external forces in the marmoset symphysis. The contrast between increased load-resistance ability in the anterior dentition versus relatively reduced symphyseal strength suggests both a potentially complex loading environment during gouging and a mosaic pattern of craniodental adaptations to this derived feeding behavior.

As primate exudativory involves different behavioral strategies to obtain gums and sap, it is not surprising that there is some discordance among the comparative evidence regarding the impact of anterior dental loading on masticatory elements. This is compounded by the fact that gouging and scraping are critical adaptations in some taxa and only seasonally important for others. Indeed, the ecomorphological­ significance of seasonality in feeding behaviors remains poorly understood, and this negatively affects analyses of the impact of fallback foods on skull form in living and fossil primates.


Bite Force Fallback Food Mandibular Corpus Enamel Prism Masticatory Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Anne Burrows and Leanne Nash are thanked for inviting us to contribute to their volume on primate exudativory. For access to cranial collections, thanks are offered to the following curators and staff: M. Rutzmoser (Harvard Museum of Comparative Zoology); R. MacPhee, E. Westwig, G. Musser, S. Anderson, W. Fuchs (American Museum of Natural History); L. Heaney, B. Patterson, W. Stanley, J. Kerbis (Field Museum of Natural History); R. Thorington, L. Gordon (Smithsonian National Museum of Natural History); P. Jenkins (British Museum of Natural History); M. Tranier, J. Roche, D. Goujet, D. Robineau, J. Cuisin, F. Renoult, F. Petter (Muséum National d’Histoire Naturelle); C. Smeenk, M. Hoogmoed, D. Reider (Rijksmuseum van Natuurlijke Historie); R. Angermann (Museum für Naturkunde – Humboldt Universität); T. Daeschler (Academy of Natural Sciences of Philadelphia); C. Cicero, B. Stein (University of California Museum of Vertebrate Zoology); A. Friday (University of Cambridge Department of Zoology); S. McLaren, D. Schlitter (Carnegie Museum of Natural History); W. Van Neer (Koninklijk Museum voor Midden-Afrika); C. Grigson (Odontological Museum – Royal College of Surgeons); G. Lenglet (Institut Royal des Sciences Naturelles de Belgique); R. Kraft (Zoologische Staatssammlung München); G. Storch (Forschungsinstitut und Naturmuseum Senckenberg); and D. Howlett, M. Harman (Powell-Cotton Museum of Natural History). For comments, advice, and the gracious use of their facilities, we thank Alfred Rosenberger, Tim Bromage, John Wahlert, Laurie Godfrey, Tara Peburn, Terence Capellini, Barth Wright, the late Gene Lautenschlager, an anonymous reviewer, as well as the Department of Biomaterials and Biomimetics at NYU College of Dentistry. The research herein was supported by the NSF (BCS-0924592 & BCS-0622479), Leakey Foundation, American Philosophical Society, and American Museum of Natural History.


  1. Bearder, S.K. Doyle, G.A. (1974) Ecology of bushbabies, Galago senegalensis and G. crassicaudatus, with some notes on their behavior in the field. In Martin, R.D., Doyle, G.A. & Walker, A.C. (eds.): Prosimian biology. London: Duckworth.Google Scholar
  2. Bearder, S.K. Martin, R.D. (1980) Acacia gum and its use by bushbabies, Galago senegalensis (Primates: Lorisidae). Int. J. Primatol. 1:103–128.CrossRefGoogle Scholar
  3. Bouvier, M. (1986a) A biomechanical analysis of mandibular scaling in Old World monkeys. Am. J. Phys. Anthropol. 69:473–482.CrossRefGoogle Scholar
  4. Bouvier, M. (1986b) Biomechanical scaling of mandibular dimensions in New World monkeys. Int. J. Primatol. 7:551–567.CrossRefGoogle Scholar
  5. Boyde, A. (1990) Developmental interpretations of dental microstructure. In DeRousseau, C.J. (ed.): Primate life history and evolution. New York: Wiley.Google Scholar
  6. Burrows, A.M. Smith, T.D. (2005) Three-dimensional analysis of mandibular morphology in Otolemur. Am. J. Phys. Anthropol. 127:219–230.PubMedCrossRefGoogle Scholar
  7. Burrows, A.M. Smith, T.D. (2007) Histomorphology of the mandibular condylar cartilage in greater galagos (Otolemur ssp.). Am. J. Primatol. 69:36–45.PubMedCrossRefGoogle Scholar
  8. Charles-Dominique, P. (1977) Ecology and Behaviour of Nocturnal Primates. London: Duckworth.Google Scholar
  9. Cole, T.M. (1992) Postnatal heterochrony of the masticatory apparatus in Cebus apella and Cebus albifrons. J. Human Evol. 23:253–282.CrossRefGoogle Scholar
  10. Crompton, R.H. (1984) Foraging, habitat structure, and locomotion in two species of Galago. In Rodman, P.S. & Cant, J.G.H. (eds.): Adaptations for foraging in nonhuman primates. New York: Columbia University Press.Google Scholar
  11. Daegling, D.J. (1992) Mandibular morphology and diet in the genus Cebus. Int. J. Primatol. 13:545–570.CrossRefGoogle Scholar
  12. Dechow, P.C. Carlson, D.S. (1990) Occlusal force and craniofacial biomechanics during growth in rhesus monkeys. Am. J. Phys. Anthropol. 83:219–237.PubMedCrossRefGoogle Scholar
  13. Dumont, E.R. (1997) Cranial shape in fruit, nectar, and exudate feeders: Implications for interpreting the fossil record. Am. J. Phys. Anthropol. 102:187–202.PubMedCrossRefGoogle Scholar
  14. Dumont, E.R. Herrel, A. (2003) The effects of gape angle and bite point on bite forces in bats. J. Exp. Biol. 206:2117–2123.PubMedCrossRefGoogle Scholar
  15. Eaglen, R.H. (1986) Morphometrics of the anterior dentition in strepsirhine primates. Am. J. Phys. Anthropol. 71:185–201.PubMedCrossRefGoogle Scholar
  16. Eng, C.M., Ward, S.R., Vinyard, C.J., Taylor, A.B. (2009) The mechanics of the masticatory apparatus facilitate muscle force production at wide jaw gapes in tree-gouging common marmosets (Callithrix jacchus). J. Exp. Biol., 212:4040–4055.PubMedCrossRefGoogle Scholar
  17. Garber, P.A. (1992) Vertical clinging, small body size, and the evolution of feeding adaptations in the Callitrichinae. Am. J. Phys. Anthropol. 88:469–482.PubMedCrossRefGoogle Scholar
  18. Greaves, W.S. (1995) Functional predictions from theoretical models of the skull and jaws in reptiles and mammals. In Thomason, J.J. (ed.): Functional morphology in vertebrate paleontology. Cambridge: Cambridge University Press.Google Scholar
  19. Herring, S.W., Herring, S.E. (1974) The superficial masseter and gape in mammals. Am. Nat. 108:561–576.CrossRefGoogle Scholar
  20. Heymann, E.W., Smith, A.C. (1999) When to feed on gums: Temporal patterns of gummivory in wild tamarins, Saguinus mystax and nongouging Saguinus fuscicollis (Callitrichinae). Zoo Biology 18:459–471.CrossRefGoogle Scholar
  21. Hogg, R.T. (2010) Dental microstructure and growth in the cebid primates. Ph.D. Dissertation, City University of New York.Google Scholar
  22. Hogue, A.S. (2008) Mandibular corpus form and its functional significance: Evidence from marsupials. In Vinyard, C.J., Ravosa, M.J. & Wall, C.E. (eds.): Primate craniofacial biology and function. New York: Springer Academic Publishers.CrossRefGoogle Scholar
  23. Hylander, W.L. (1979) The functional significance of primate mandibular form. J. Morphol. 160:223–240.PubMedCrossRefGoogle Scholar
  24. Hylander, W.L., Ravosa, M.J., Ross, C.F., Johnson, K.R. (1998) Mandibular corpus strain in primates: Further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force. Am. J. Phys. Anthropol. 107:257–271.PubMedCrossRefGoogle Scholar
  25. Hylander, W.L., Ravosa, M.J., Ross, C.F., Wall, C.E., Johnson, K.R. (2000) Symphyseal fusion and jaw-adductor muscle force: An EMG study. Am. J. Phys. Anthropol. 112:469–492.PubMedCrossRefGoogle Scholar
  26. Hylander, W.L., Wall, C.E., Vinyard, C.J., Ross, C.F., Ravosa, M.J., Williams, S.H., Johnson, K.R. (2005) Temporalis function in anthropoids and strepsirrhines: An EMG study. Am. J. Phys. Anthropol. 128:35–56.PubMedCrossRefGoogle Scholar
  27. Kinzey, W.G. (1992) Dietary and dental adaptations in the Pitheciinae. Am. J. Phys. Anthropol. 88:499–514.PubMedCrossRefGoogle Scholar
  28. Maas, M.C., Dumont, E.R. (1999) Built to last: The structure, function, and evolution of primate dental enamel. Evol. Anthropol. 8:133–152.CrossRefGoogle Scholar
  29. Marshall, A.J., Wrangham, R.W. (2007) Evolutionary consequences of fallback foods. Int. J. Primatol. 28:1219–1235.CrossRefGoogle Scholar
  30. Mork, A.L., Horton, W.E. Jr, Vinyard, C.J. (2010) A comparative analysis of the articular cartilage in the temporomandibular joint of gouging and non-gouging New World monkeys. In Burrows, A.M. Nash, L.T. (eds.): The Evolution of exudativory in primates. New York: Springer Academic Publishers.Google Scholar
  31. Nash, L.T. (1986) Dietary, behavioral, and morphological aspects of gummivory in primates. Ybk. Phys. Anthropol. 29:113–137.CrossRefGoogle Scholar
  32. Nogami, Y., Natori, M. (1986) Fine structure of the dental enamel in the family Callitrichidae (Ceboidea, Primates). Primates 72:245–258.CrossRefGoogle Scholar
  33. Nordstrom, S.H., Yemm, R. (1974) The relationship between jaw position and isometric active tension produced by direct stimulation of the rat masseter muscle. Arch. Oral Biol. 19:353359. PubMedCrossRefGoogle Scholar
  34. O’Donnell, C.F., Dilks, P.J. (1989) Sap-feeding by the kaka (Nestor meridionalis) in South Westland, New Zealand. Notornis 36:65–71.Google Scholar
  35. Passamani, M., Rylands, A.B. (2000) Feeding behavior of Geoffroy’s marmoset (Callithrix geoffroyi) in an Atlantic forest fragment of South-eastern Brazil. Primates 41:27–38.CrossRefGoogle Scholar
  36. Porter, L.M. (2001) Dietary differences among sympatric Callitrichinae in Northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 22:961–992.CrossRefGoogle Scholar
  37. Power, M.L., Oftedal, O.T. (1996) Differences among captive callitrichids in the digestive responses of dietary gum. Am. J. Primatol. 40:131–144.CrossRefGoogle Scholar
  38. Ravosa, M.J. (1991) Structural allometry of the prosimian mandibular corpus and symphysis. J. Human Evol. 20:3–20.CrossRefGoogle Scholar
  39. Ravosa, M.J. (1996) Jaw morphology and function in living and fossil Old World monkeys. Int. J. Primatol. 17:909–932.CrossRefGoogle Scholar
  40. Ravosa, M.J. (2000) Size and scaling in the mandible of living and extinct apes. Folia Primatol. 71:305–322.PubMedCrossRefGoogle Scholar
  41. Ravosa, M.J., Daniel, A.N., Costley, D.B. (2010) Allometry and evolution in the galago skull. Folia Primatol., in press.Google Scholar
  42. Ravosa, M.J., Nicholson-López, E.K., Menegaz, R.A., Stock, S.R., Stack, M.S., Hamrick, M.W. (2008) Using ‘Mighty Mouse’ to understand masticatory plasticity: Myostatin-deficient mice and musculoskeletal function. Int. Comp. Biol. 48:345–359.CrossRefGoogle Scholar
  43. Rensberger, J.M. (2001) Pathways to functional differentiation in mammalian enamel. In Teaford, M.F., Smith, M.M., & Ferguson, W.J. (eds.): Development, function, and evolution of teeth. Cambridge: Cambridge University Press.Google Scholar
  44. Risnes, S. (1998) Growth tracks in dental enamel. J. Human Evol. 35:331–350.CrossRefGoogle Scholar
  45. Rosenberger, A.L. (1978) Loss of incisor enamel in marmosets. J. Mammal. 59:207208. CrossRefGoogle Scholar
  46. Rosenberger, A.L. (1992) Evolution of feeding niches in New World monkeys. Am. J. Phys. Anthropol. 88:525–562.PubMedCrossRefGoogle Scholar
  47. Ryan, T.M., Colbert, M., Ketcham, R.A., Vinyard, C.J. (2010) Trabecular bone structure in the mandibular condyles of gouging and non-gouging platyrrhine primates. Am. J. Phys. Anthropol. 141:583–593.PubMedGoogle Scholar
  48. Smith, A.P. (1982) Diet and feeding strategies of the marsupial sugar glider in temperate Australia. J. Animal Ecol. 51:149–166.CrossRefGoogle Scholar
  49. Taylor, A.B., Vinyard, C.J. (2004) Comparative analysis of masseter fiber architecture in tree-gouging (Callithrix jacchus) and nongouging (Saguinus oedipus) callitrichids. J. Morphol. 261:276–285.PubMedCrossRefGoogle Scholar
  50. Taylor, A.B., Eng, C.M., Anapol, F.C., Vinyard, C.J. (2009) The functional correlates of jaw-muscle fiber architecture in tree-gouging and nongouging callitrichid monkeys. Am. J. Phys. Anthropol. 139:353–367.PubMedCrossRefGoogle Scholar
  51. Viguier, B. (2004) Functional adaptations in the craniofacial morphology of Malagasy primates: Shape variations associated with gummivory in the family Cheirogaleidae. Ann. Anat. 186:495–501.PubMedCrossRefGoogle Scholar
  52. Vinyard, C.J., Ryan, T.M. (2006) Cross-sectional bone distribution in the mandibles of gouging and non-gouging Platyrrhini. Int. J. Primatol. 27:1461–1490.CrossRefGoogle Scholar
  53. Vinyard, C.J., Wall, C.E., Williams, S.H., Hylander, W.L. (2003) Comparative functional analysis of skull morphology of tree-gouging primates. Am. J. Phys. Anthropol. 120:153–170.PubMedCrossRefGoogle Scholar
  54. Vinyard, C.J., Wall, C.E., Williams, S.H., Hylander, W.L. (2008) Patterns of variation across primates in jaw-muscle electromyography during mastication. Int. Comp. Biol. 48:294–311.CrossRefGoogle Scholar
  55. Vinyard, C.J., Wall, C.E., Williams, S.H., Mork, A.L., Garner, B.A., Melo, L.C.O., Valença-Montenegro, M.M., Valle, Y.B.M., Monteiro da Cruz, M.A.O., Lucas, P.W., Schmitt, D., Taylor, A.B., Hylander, W.L. (2009) The evolutionary morphology of tree gouging in ­marmosets. In Ford, S.M., Davis, L.C. & Porter, L.M. (eds.): The smallest anthropoids: The marmoset/callimico radiation. New York: Springer Academic Publishers.CrossRefGoogle Scholar
  56. Von Koenigswald, W., Rensberger, J.M., Pretzschner, H.U. (1987) Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity. Nature 328:150152. CrossRefGoogle Scholar
  57. Williams, S.H., Wall, C.E., Vinyard, C.J., Hylander, W.L. (2002) A biomechanical of skull form in gum-harvesting galagids. Folia Primatol. 73:197–209.PubMedCrossRefGoogle Scholar
  58. Wright, B.W. (2005) Craniodental biomechanics and dietary toughness in the genus Cebus. J. Human Evol. 48:473–492.CrossRefGoogle Scholar
  59. Wright, B.W., Ulibarri, L., O’Brien, J., Sadler, B., Prodham, R., Covert, H.H., Nadler, T. (2008) It’s tough out there: Variation in the toughness of ingested leaves and feeding behavior among four colobine in Vietnam. Int. J. Primatol. 29:1455–1466.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Matthew J. Ravosa
    • 1
  • Russell T. Hogg
  • Christopher J. Vinyard
  1. 1.Department of Pathology and Anatomical SciencesUniversity of Missouri School of MedicineColumbiaUSA

Personalised recommendations