Skip to main content

Nutritional and Digestive Challenges to Being a Gum-Feeding Primate

  • Chapter
  • First Online:

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Gum is an unusual food that presents significant challenges to animals that feed on it. Gum is limited in availability; trees generally secrete it only in response to damage. Gum is a β-linked complex polysaccharide, and as such is resistant to mammalian digestive enzymes and requires fermentation by gut microbes. It contains little or no lipid, low amounts of protein, and no appreciable levels of vitamins. As a food, gum can be characterized as difficult to obtain, potentially limited in quantity, difficult to digest, and primarily a source of energy and minerals. Despite these drawbacks, many primates feed extensively on gums. Among mammals, gum-feeding largely appears to be a primate dietary adaptation. Why are there so many primate gum-feeders and what adaptations have allowed them to make a living on such a problematic food? This is the central question of this book. This chapter examines digestive and nutritional aspects of gum. Specific examples of biological adaptations found in common and pygmy marmosets (Callithrix jacchus and Cebuella pygmaea), small New World primate gum-feeding specialists, will be examined. These marmoset species have many similarities in their behavior, morphology and metabolism, but also some instructive differences in their digestive function. C. pygmaea is the smallest of the marmosets but has the slowest passage rate of digesta. This might represent an adaptation to retain difficult-to-digest material, such as gum, within the gut to allow fermentation. In contrast, C. jacchus has a rapid passage rate. Passage rate in C. jacchus appears adapted more for rapidly excreting indigestible material (e.g., seeds) than for retaining gum within the gut to enable more complete digestion. Fruit is a rare component of C. pygmaea’s diet; hence any constraint on feeding caused by filling the gut with ingested seeds is greatly relaxed, apparently enabling digestive kinetics that favor digestive efficiency over maximizing food intake. Interestingly, however, these marmosets share an ability to digest gum despite their differences in gum kinetics. In captivity both species have been shown to be more able to digest Acacia gum than related species that feed less often on gum in the wild.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal, A.A., Konno, K. 2009. Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol 40:311–331.

    Article  Google Scholar 

  • Alonso, C., Langguth, A. 1989. Ecologia e comportamento de Callithrix jacchus (Primates: Callitrichidae) numa ilha de floresta Atlantica. Rev Nordestina Biol 6:105–137.

    Google Scholar 

  • Bearder, S.K., Martin, R.D. 1980. Acacia gum and its use by bushbabies, Galago senegalensis (Primates: Lorisidae). Int J Primatol 1:103–128.

    Article  Google Scholar 

  • Bollinger, R.R., Barbas, A.S., Bush, E.L., Lin, S.S., and Parker, W. 2007. Biofilms in the large bowel suggest an apparent function for the human vermiform appendix. J Theor Biol 249:826–831.

    Article  CAS  Google Scholar 

  • Booth, A.N., Elvehjem, C.A., and Hart, E.B. 1949. The importance of bulk in the nutrition of the guinea pig. J Nutr 37:263–274.

    PubMed  CAS  Google Scholar 

  • Booth, A.N., Henderson, A.P. 1963. Physiologic effects of three microbial polysaccharides on rats. Toxicol Appl Pharmacol 5:478–484.

    Article  PubMed  CAS  Google Scholar 

  • Caton, J.M., Hill, D.M., Hume, I.D., and Crook, G.A. 1996. The digestive strategy of the common marmoset. Comp Biochem Physiol A 114:1–8.

    Article  CAS  Google Scholar 

  • Chivers, D.J., Wood, B.A., and Bilsborough, A. 1984. Food acquisition and processing in primates. New York: Plenum Press.

    Google Scholar 

  • Coimbra-Filha, A.F., Mittermeier, R.A. 1977. Tree-gouging, exudate-eating, and the short-tusked condition in Callithrix and Cebuella. In The biology and conservation of the Callitrichidae, ed. D.G. Kleiman. Washington (DC): Smithsonian Institution Press.

    Google Scholar 

  • Coimbra-Filha, A.F., Rocha, N.D.C., and Pissinatti, A. 1980. Morfofisiologia do ceco e sua correlacao com o tipo odontologico em Callitrichidae (Platyrrhini, Primates). Rev Brasil Biol 40:177–185.

    Google Scholar 

  • Cummings, J.H. 1981. Dietary fibre. Br Med Bull 57:65–70.

    Google Scholar 

  • Demment, M.W. 1983. Feeding ecology and the evolution of body size in baboons. Afr J Ecol 21:219–233.

    Article  Google Scholar 

  • Demment, M.W., Van Soest, P.J. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672.

    Article  Google Scholar 

  • Emmons, L.H. 1980. Ecology and resource partitioning among nine species of African rain forest squirrels. Ecol Monogr 50:31–54.

    Article  Google Scholar 

  • Farrell, B.D., Dussourd, D.E., and Mitter, C. 1991. Escalation of plant defense: do latex and resin canals spur plant diversification. Am Nat 138:881–900.

    Article  Google Scholar 

  • Feldmann, M., Heymann, E.W. 2001. The effect of tamarin seed dispersal on the recruitment of Parkia panurensis. Folia Primatol 72:158–159.

    Google Scholar 

  • Ferrari, S.J., Martins, E.S. 1992. Gummivory and gut morphology in two sympatric callitrichids (Callithrix emilae and Saguinus fuscicollis weddelli) from Western Brazilian Amazonia. Am J Phys Anthropol 88:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, S.J., Lopes, M.A., and Krause, E.A.K. 1993. Gut morphology of Callithrix nigriceps and Saguinus labiatus from Western Brazilian Amazonia. Am J Phys Anthropol 90:487–493.

    Article  PubMed  CAS  Google Scholar 

  • Fonseca, G.A.B., Lacher, T.E. 1984. Exudate feeding by Callithrix jacchus penicillata in semideciduous woodland (cerrado) in central Brazil. Primates 25:441–450.

    Article  Google Scholar 

  • Garber, P.A. 1986. The ecology of seed dispersal in two species of callitrichid primates (Saguinus mystax and Saguinus fuscicollis). Am J Primatol 10:155–170.

    Article  Google Scholar 

  • Goodrum, L.J., Patel, A., Leykam, J.F., and Kieliszewski, M.J. 2000. Gum arabic glycoprotein contains glycomodules of extension and arabinogalactan-glycoproteins. Phytochemistry 54:99–106.

    Article  PubMed  CAS  Google Scholar 

  • Heymann, E.W., Smith, A.C. 1999. When to feed on gums: temporal patterns of gummivory in wild tamarins, Saguinus mystax and Saguinus fuscicollis (Callitrichinae). Zoo Biol 18:459–471.

    Article  Google Scholar 

  • Hove, E.L., Herndon, F.J. 1957. Growth of rabbits on purified diets. J Nutr 63:193–199.

    PubMed  CAS  Google Scholar 

  • Hume, I.D. 1982. Digestive physiology and nutrition of marsupials. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hume, I.D. 1989. Optimal digestive strategies in mammalian herbivores. Physiol Zool 62:1145–1163.

    Google Scholar 

  • Johnson, I.T., Gee, J.M., and Mahoney, R.R. 1984. Effect of dietary supplements of guar gum and cellulose on intestinal cell proliferation, enzyme levels and sugar transport in the rat. Br J Nutr 52:477–487.

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara, S., Maeda, H. 1983. The monosaccharide composition of cell wall material in cassava tuber (Manihot utilissima). Agric Biol Chem 47:2335–2340.

    Article  CAS  Google Scholar 

  • Knogge, C., Heymann, E.W. 2003. Seed dispersal by sympatric tamarins, Saguinus mystax and Saguinus fuscicollis diversity and characteristics of plant species. Folia Primatol 74:33–47.

    Article  PubMed  Google Scholar 

  • Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., and Kohno, K. 2004. Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378.

    Article  PubMed  CAS  Google Scholar 

  • Kritchevsky, D. 1988. Dietary fiber. Ann Rev Nutr 8:301–328.

    Article  CAS  Google Scholar 

  • Lichtenberg, E.M., Hallager, S. 2008. A description of commonly observed behaviors for the kori bustard (Ardeotis kori). J Ethol 26:17–34.

    Article  Google Scholar 

  • Mangione, A.M., Dearing, M.D., and Karasov, W.H. 2000. Interpopulational differences in tolerance to creosote bush resin in desert woodrats (Neotoma lepida). Ecology 81:2067–2076.

    Google Scholar 

  • McLean Ross, A.H., Eastwood, M.A., Brydon, W.G., Anderson, J.R., and Anderson, D.M. 1983. A study of the effects of dietary gum arabic in humans. Am J Clin Nutr 37:368–375.

    Google Scholar 

  • McLean Ross, A.H., Eastwood, M.A., Brydon, W.G., Busuttil, A., and McKay, L.F. 1984. A study of the effects of dietary gum arabic in the rat. Br J Nutr 51:47–56.

    Article  PubMed  CAS  Google Scholar 

  • Milton, K., Dintzis, F. 1981. Nitrogen-to-protein conversion factors for tropical tree samples. Biotropica 13:177–181.

    Article  Google Scholar 

  • Monke, J.V. 1941. Non-availability of gum arabic as a glycogenic foodstuff in the rat. Proc Soc Exp Biol Med 46:178–179.

    CAS  Google Scholar 

  • Nash, L.T. 1986. Dietary, behavioral, and morphological aspects of gummivory in primates. Yearb Phys Anthropol 29:113–137.

    Article  Google Scholar 

  • National Research Council. 2003. Nutrient requirements of nonhuman primates. Washington (DC): The National Academies Press.

    Google Scholar 

  • Peres, C.A. 2000. Identifying keystone plant resources in tropical forests: the case of gums from Parkia pods. J Trop Ecol 16:287–317.

    Article  Google Scholar 

  • Power, M.L. 1991. Digestive function, energy intake and the response to dietary gum in captive callitrichids [dissertation]. Berkeley (CA): University of California at Berkeley. 235 pp.

    Google Scholar 

  • Power, M.L., Oftedal, O.T. 1996. Differences among captive callitrichids in the digestive responses to dietary gum. Am J Primatol 40:131–144.

    Article  Google Scholar 

  • Power, M.L., Tardif, S.D., Power, R.A., and Layne, D.G. 2003. Resting energy metabolism of Goeldi’s monkey (Callimico goeldii) is similar to that of other callitrichids. Am J Primatol 60:57–67.

    Article  PubMed  Google Scholar 

  • Power, M.L., Myers, E.W. 2009. Digestion in the common marmoset (Callithrix jacchus), a gummivore–frugivore. Am J Primatol 71:957–963.

    Article  PubMed  Google Scholar 

  • Ramirez, M.F., Freese, C.H., and Revilla, J.C. 1977. Feeding ecology of the pygmy marmoset, Cebuella pygmaea, in northeastern Peru. In The biology and conservation of the Callitrichidae, ed. D.G. Kleiman. Washington (DC): Smithsonian Institution Press.

    Google Scholar 

  • Rhoades, D.F., Cates, R.G. 1976. Towards a general theory of plant antiherbivory chemistry. Recent Adv Phytochem 10:168–213.

    CAS  Google Scholar 

  • Skead, C.J. 1969. Gompou, Ardeotis kori, eating gum. Bokmakierie 21:48.

    Google Scholar 

  • Smith, A.C. 2000. Composition and proposed nutritional importance of exudates eaten by saddleback (Saquinus fuscicollis) and mustached (Saguinus mystax) tamarins. Int J Primatol 21:69–84.

    Article  Google Scholar 

  • Smith, A.P., Lee, A.K. 1984. The evolution of strategies for survival and reproduction in possums and gliders. In Possums and gliders, eds. A. Smith, I. Hume. Chipping North, Australia: Surrey Beatty and Sons Pty Limited.

    Google Scholar 

  • Soini, P. 1982. Ecology and population dynamics of the pygmy marmosets, Cebuella pygmaea. Folia Primatol 39:1–21.

    Article  PubMed  CAS  Google Scholar 

  • Soltis, P.S., Soltis, D.E. 2004. The origin and diversification of angiosperms. Am J Bot 91:1614–1626.

    Article  PubMed  Google Scholar 

  • Stevens, C.E., Hume, I.D. 1995. Comparative physiology of the vertebrate digestive system. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tardif, S., Jaquish, C., Layne. D., Bales, K., Power, M., Power, R., and Oftedal, O. 1998. Growth variation in common marmoset monkeys fed a purified diet: relation to care-giving and weaning behaviors. Lab Anim Sci 48:264–269.

    PubMed  CAS  Google Scholar 

  • Tomlin, J., Read, N.W. 1988. Laxative properties of indigestible plastic particles. Br Med J 297:1175–1176.

    Article  CAS  Google Scholar 

  • Urban, E.K., Brown, L.H., Brown Mrs., and Newman, K.B. 1978. Kori bustard eating gum. Bokmakierie 30:105.

    Google Scholar 

  • Ushida, K., Fujita, S., and Ohashi, G. 2006. Nutritional significance of the selective ingestion of Albizia zygia gum exudate by wild chimpanzees in Bossou, Guinea. Am J Primatol 68:143–151.

    Article  PubMed  CAS  Google Scholar 

  • Van Soest, P.J. 1982. Nutritional ecology of the ruminant. Corvalis, Oregon: O and B Books Inc.

    Google Scholar 

  • Wong, J.M.W., de Souza, R., Kendall, C.W.C., Emam, A., and Jenkins, D.J.A. 2006. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243.

    Article  PubMed  CAS  Google Scholar 

  • Wrick, K.L.F. 1979. The influence of dietary fibers on intestinal passage, laxation and stool characteristics in humans [dissertation]. Ithaca (NY): Cornell University. 330 pp.

    Google Scholar 

  • Wyatt, G.M., Bayliss, C.E., and Holcroft, J.D. 1986. A change in human faecal flora in response to inclusion of gum arabic in the diet. Br J Nutr 55:261–266.

    Article  PubMed  CAS  Google Scholar 

  • Yépez, P., de la Torre, S., and Snowdon, C.T. 2005. Interpopulation differences in exudate feeding of pygmy marmosets in Ecuadorian Amazonia. Am J Primatol 66:145–158.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Power .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Power, M.L. (2010). Nutritional and Digestive Challenges to Being a Gum-Feeding Primate. In: Burrows, A., Nash, L. (eds) The Evolution of Exudativory in Primates. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6661-2_2

Download citation

Publish with us

Policies and ethics