Skip to main content

Cardiac Electrophysiological Imaging: Solving the Inverse Problem of Electrocardiography

  • Chapter
  • First Online:
Cardiac Electrophysiology Methods and Models
  • 2147 Accesses

Abstract

In this chapter, we review the concepts, principles, and potential applications of cardiac electrophysiological imaging. First, the idea and history of the ECG inverse problem is introduced. Second, the following representative inverse methods are presented: (1) estimation of the cardiac electrical activity represented by equivalent moving dipole(s); (2) heart surface imaging approaches, including epicardial potential imaging and heart surface activation imaging; and (3) estimation of the distributed three-dimensional cardiac electrical activity. Finally, the potential applications and future trends of cardiac electrophysiological imaging are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart: in vitro and in vivo accuracy results. Circulation 1997; 95:1611–22.

    Article  PubMed  CAS  Google Scholar 

  2. Gornick CC, Adler SW, Pederson B, et al. Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation 1999; 99:829–35.

    Article  PubMed  CAS  Google Scholar 

  3. Taccardi B. Distribution of heart potentials on the thoracic surface of normal human subjects. Circ Res 1963; 12:341–52.

    Article  PubMed  CAS  Google Scholar 

  4. Gulrajani RM, Roberge FA, Savard P. Moving dipole inverse ECG and EEG solutions. IEEE Trans Biomed Eng 1984; 31:903–10.

    Article  PubMed  CAS  Google Scholar 

  5. Geselowitz DB. Multipole representation for an equivalent cardiac generator. Proc IRE 1960; 48:75–9.

    Article  Google Scholar 

  6. Barr RC, Spach MS. Inverse calculation of QRS-T epicardial potentials from normal and ectopic beats in the dog. Circ Res 1978; 42:661–75.

    Article  PubMed  CAS  Google Scholar 

  7. Shahidi AV, Savard P, Nadeau R. Forward and inverse problems of electrocardiography: modeling and recovery of epicardial potentials in humans. IEEE Trans Biomed Eng 1994; 41:249–56.

    Article  PubMed  CAS  Google Scholar 

  8. He B, Wu D. A bioelectric inverse imaging technique based on surface Laplacians. IEEE Trans Biomed Eng 1997; 44: 529–38.

    Article  PubMed  CAS  Google Scholar 

  9. Oster HS, Taccardi B, Lux RL, et al. Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation 1997; 96:1012–24.

    Article  PubMed  CAS  Google Scholar 

  10. Greensite F, Huiskamp G. An improved method for estimating epicardial potentials from the body surface. IEEE Trans Biomed Eng 1998; 45:98–104.

    Article  PubMed  CAS  Google Scholar 

  11. Ramanathan C, Raja NG, Jia P, et al. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med 2004; 10:422–8.

    Article  PubMed  CAS  Google Scholar 

  12. Cuppen JJM, Van Oosterom A. Model studies with inversely calculated isochrones of ventricular depolarization. IEEE Trans Biomed Eng 1984; 31:652–59.

    Article  PubMed  CAS  Google Scholar 

  13. Huiskamp G, Greensite F. A new method for myocardial activation imaging. IEEE Trans Biomed Eng 1997; 44:433–46.

    Article  PubMed  CAS  Google Scholar 

  14. Tilg B, Fischer G, Modre R, et al. Model-based imaging of cardiac electrical excitation in humans. IEEE Trans Med Imaging 2002; 21:1031–9.

    Article  PubMed  Google Scholar 

  15. Berger T, Fischer G, Pfeifer B, et al. Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation. J Am Coll Cardiol 2006; 48:2045–52.

    Article  PubMed  Google Scholar 

  16. He B, Wu D. Imaging and visualization of 3-D cardiac electric activity. IEEE Trans Inf Technol Biomed 2001; 5:181–6.

    Article  PubMed  CAS  Google Scholar 

  17. Li G, He B. Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach. IEEE Trans Biomed Eng 2001; 48:660–9.

    Article  PubMed  CAS  Google Scholar 

  18. He B, Li G, Zhang X. Noninvasive three-dimensional activation time imaging of ventricular excitation by means of a heart-excitation model. Phys Med Bio 2002; 47:4063–78.

    Article  Google Scholar 

  19. Ohyu S, Okamoto Y, Kuriki S. Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties. IEEE Trans Biomed Eng 2002; 49:509–19.

    Article  PubMed  Google Scholar 

  20. Skipa O, Sachse NF, Werner C, et al. Transmembrane potential reconstruction in anisotropic heart model. Int J of Bioelectromagnetism 2002; 4:17–8.

    Google Scholar 

  21. Zhang X, Ramachandra I, Liu Z, et al. Noninvasive three-dimensional electrocardiographic imaging of ventricular activation sequence. Am J Physiol Heart Circ Physiol 2005; 289: H2724–32.

    Article  PubMed  CAS  Google Scholar 

  22. Liu Z, Liu C, He B. Noninvasive reconstruction of three-dimensional ventricular activation sequence from the inverse solution of distributed equivalent current density. IEEE Trans Med Imaging 2006; 25:1307–18.

    Article  PubMed  Google Scholar 

  23. Han C, Liu Z, Zhang X, et al. Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: a computational and experimental study on a rabbit model. IEEE Trans Med Imaging 2008; 27:1622–30.

    Article  PubMed  Google Scholar 

  24. Liu C, Skadsberg ND, Ahlberg SE, et al. Estimation of global ventricular activation sequences by noninvasive three-dimensional electrical imaging: validation studies in a Swine model during pacing. J Cardiovasc Electrophysiol 2008; 19:535–40.

    Article  PubMed  Google Scholar 

  25. Ideker RE, Bandura JP, Cox JW Jr, et al. Path and significance of heart vector migration during QRS and ST-T complexes of ectopic beats in isolated perfused rabbit hearts. Circ Res 1977; 41:558–64.

    Article  PubMed  CAS  Google Scholar 

  26. Okamoto Y, Teramachi Y, Musha T. Limitation of the inverse problem in body surface potential mapping. IEEE Trans Biomed Eng 1983; 30:749–54.

    Article  PubMed  CAS  Google Scholar 

  27. Parson I, Downar E. Clinical instrumentation for the intra-operative mapping of ventricular arrhythmias. Pacing Clin Electrophysiol 1984; 7:683–92.

    Article  PubMed  CAS  Google Scholar 

  28. Barr RC, Ramsey M 3rd, Spach MS. Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans Biomed Eng 1977; 24:1–11.

    Article  PubMed  CAS  Google Scholar 

  29. Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 1992; 34:561–80.

    Article  Google Scholar 

  30. Ramanathan C, Jia P, Ghanem RN, et al. Activation and repolarization of the normal human heart under complete physiological conditions. Proc Nat Acad Sci U S A 2006; 103:6309–14.

    Article  CAS  Google Scholar 

  31. Fischer A. Optimization techniques in cardiac resynchronization therapy. Future Cardiol 2009; 5:355–65.

    Article  PubMed  Google Scholar 

  32. Greensite F. Remote reconstruction of confined wavefront propagation. Inv Prob 1995; 11:361–70.

    Article  Google Scholar 

  33. Geselowitz DB, Miller WT. A bidomain model for anisotropic cardiac muscle. Ann Biomed Eng 1983; 11:191–206.

    Article  PubMed  CAS  Google Scholar 

  34. Avari JN, Rhee EK. Cardiac resynchronization therapy for pediatric heart failure. Heart Rhythm 2008; 5:1476–8.

    Article  PubMed  Google Scholar 

  35. He B, Li G, Zhang X. Noninvasive imaging of ventricular transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans Biomed Eng 2003; 50:1190–202.

    Article  PubMed  Google Scholar 

  36. Helm P, Beg MF, Miller MI, et al. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann N Y Acad Sci 2005; 1047:296–307.

    Article  PubMed  Google Scholar 

  37. Zhang Y, Zhu S, He B. A high-order finite element algorithm for solving the three-dimensional EEG forward problem. Phys Med Biol 2004; 49:2975–87.

    Article  PubMed  CAS  Google Scholar 

  38. Khoury DS, Taccardi B, Lux RL, et al. Reconstruction of endocardial potentials and activation sequences from intracavitary probe measurements. Localization of pacing sites and effects of myocardial structure. Circulation 1995; 91:845–63.

    Article  PubMed  CAS  Google Scholar 

  39. Khoury DS, Berrier KL, Badruddin SM, et al. Three-dimensional electrophysiological imaging of the intact canine left ventricle using a noncontact multielectrode cavitary probe: study of sinus, paced, and spontaneous premature beats. Circulation 1998; 97:399–409.

    Article  PubMed  CAS  Google Scholar 

  40. Schilling RJ, Peters NS, Davies DW. Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter: comparison of contact and reconstructed electrograms during sinus rhythm. Circulation 1998; 98: 887–98.

    Article  PubMed  CAS  Google Scholar 

  41. He B. Imaging 3-dimensional cardiac electrical activity from intra-cavity potentials. Proceedings of the 28th Annual International Conference IEEE Engineering in Medicine and Biology Society 2006; 4519.

    Google Scholar 

  42. He B, Liu C, Zhang Y. Three-dimensional cardiac electrical imaging from intracavity recordings. IEEE Trans Biomed Eng 2007; 54:1454–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by NIH R01HL080093 and NSF CBET-0756331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

He, B., Liu, C. (2010). Cardiac Electrophysiological Imaging: Solving the Inverse Problem of Electrocardiography. In: Sigg, D., Iaizzo, P., Xiao, YF., He, B. (eds) Cardiac Electrophysiology Methods and Models. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6658-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6658-2_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6657-5

  • Online ISBN: 978-1-4419-6658-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics