Skip to main content

Potential Neuroprotective Strategies for Traumatic Brain Injury

  • Chapter
  • First Online:
Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases

Abstract

Traumatic brain injury (TBI) is caused by physical trauma to the brain tissue that temporarily or permanently impairs brain function. According to Centers for Disease Control and Prevention about 2 million people sustain a TBI in the USA each year, of which approximately 70,000–90,000 suffer from long-term disability (Nolan, 2005). Symptoms and severity of a TBI can be mild, moderate, or severe depending on the intensity of impact and extent of the damage to the brain. Some TBI symptoms appear immediately, while others do not appear until several days or weeks. Mild TBI symptoms include headache, confusion, lightheadedness, dizziness, blurred vision, fatigue, and trouble with memory (Bahraini et al., 2009). Moderate TBI produces a headache that gets worse with time, seizures, inability to awaken from sleep, dilation of one or both pupils of the eyes, slurred speech, loss of coordination, increased confusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson EE, Ikonomovic MD, Dixon CE, DeKosky ST (2009) Simvastatin therapy prevents brain trauma-induced increases in beta-amyloid peptide levels. Ann Neurol 66:407–414

    Article  PubMed  CAS  Google Scholar 

  • Adibhatla RM, Hatcher JF, Dempsey RJ (2002) Citicoline: neuroprotective mechanisms in cerebral ischemia. J Neurochem 80:12–23

    Article  PubMed  CAS  Google Scholar 

  • Adibhatla RM, Hatcher JF (2003) Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. J Neurosci Res 73:308–315

    Article  PubMed  CAS  Google Scholar 

  • Amarenco P (2005) Effect of statins in stroke prevention. Curr Opin Lipidol 16:614–618

    Article  PubMed  CAS  Google Scholar 

  • Andersen M, Overgaard K, Meden P, Boysen G (1999) Effects of citicoline combined with thrombolytic therapy in a rat embolic stroke model. Stroke 30:1464–1470

    Article  PubMed  CAS  Google Scholar 

  • Atif F, Sayeed I, Ishrat T, Stein DG (2009) Progesterone with vitamin D affords better neuroprotection against excitotoxicity in cultured cortical neurons than progesterone alone. Mol Med 15:328–336

    Article  PubMed  CAS  Google Scholar 

  • Bahraini NH, Brenner LA, Harwood JE, Homaifar BY, Ladley-O’Brien SE, Filley CM, Kelly JP, Adler LE (2009) Utility of the trauma symptom inventory for the assessment of post-traumatic stress symptoms in veterans with a history of psychological trauma and/or brain injury. Mil Med 174:1005–1009

    PubMed  Google Scholar 

  • Bayir H, Andelson PD, Wisniewski SR, Shore P, Lai Y, Brown D, Janesko KL, Kagan VE, Kochanek PM (2009) Therapeutic hypothermia preserves antioxidant defenses after severe traumatic brain injury in infants and children. Crit Care Med 37:689–695

    Article  PubMed  CAS  Google Scholar 

  • Bazan NG (2006) The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell Mol Neurobiol 26:901–913

    Article  PubMed  CAS  Google Scholar 

  • Bazan NG (2007) Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care 10:136–141

    Google Scholar 

  • Boonyaratanakomkit V, Bi Y, Rudd M, Edwards DP (2008) The role and mechanism of progesterone receptor activation of extra-nuclear signaling pathways in regulating gene transcription and cell cycle progression. Steroids 73:922–928

    Article  CAS  Google Scholar 

  • Bösel J, Gandor F, Harms C, Synowitz M, Harms U, Djoufack PC, Megow D, Dirnagl U, Hörtnagl H, Fink KB, Endres M (2005) Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem 92:1386–1398

    Article  PubMed  CAS  Google Scholar 

  • Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM (2001) Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 21:98–108

    PubMed  CAS  Google Scholar 

  • Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29:313–339

    Article  PubMed  CAS  Google Scholar 

  • Cekic M, Sayeed I, Stein DG (2009a) Combination treatment with progesterone and vitamin D hormone may be more effective than monotherapy for nervous system injury and disease. Front Neuroendocrinol 30:158–172

    Article  PubMed  CAS  Google Scholar 

  • Cekic M, Culter SM, Vanlandingham JW, Stein DG (2009b) Vitamin D deficiency reduces the benefits of progesterone treatment after brain injury in aged rats. Neurobiol Aging DOI: http://10.1016/j.neurobiolaging.2009.04.017, May 29. [Epub ahead of print]

  • Chen XR, Besson VC, Palmier B, Garcia Y, Plotkine M, Marchand-Leroux C (2007) Neurological recovery-promoting, anti-inflammatory, and anti-oxidative effects afforded by fenofibrate, a PPAR alpha agonist, in traumatic brain injury. J Neurotrauma 24:1119–1131

    Article  PubMed  Google Scholar 

  • Chen G, Shi J, Wei Jin W, Wang L, Xie W, Sun J, Hang C (2008a) Progesterone administration modulates TLRs/NF-κB signaling pathway in rat brain after cortical contusion. Ann Clin Lab Sci 38:65–74

    PubMed  CAS  Google Scholar 

  • Chen XR, Besson VC, Beziand T, Plotkine M, Marchand-Leroux C (2008b) Combination therapy with fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, and simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, on experimental traumatic brain injury. J Pharmacol Exp Ther 326:966–974

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C (2009) Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-kappaB pathway. Exp Neurol 216:398–406

    Article  PubMed  CAS  Google Scholar 

  • Cherian L, Goodman JC, Robertson C (2007) Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats. J Pharmacol Exp Ther 322:789–794

    Article  PubMed  CAS  Google Scholar 

  • Childers SR, Breivogel CS (1998) Cannabis and endogenous cannabinoid systems. Drug Alcohol Dependence 51:173–187

    Article  CAS  Google Scholar 

  • Chun KA, Manley GT, Stiver SI, Aiken AH, Phan N, Wang V, Meeker M, Cheng SC, Gean AD, Wintermark M (2009) Interobserver Variability in the Assessment of CT Imaging Features of Traumatic Brain Injury. J Neurotrauma 2009 Nov 6 [Epub ahead of print]

    Google Scholar 

  • Crack PJ, Gould J, Bye N, Ross S, Ali U, Habgood MD, Morganti-Kossman C, Saunders NR, Hertzog PJ Victorian Neurotrauma Research Group (2009) The genomic profile of the cerebral cortex after closed head injury in mice: effects of minocycline. J Neural Transm 116:1–12

    Article  PubMed  CAS  Google Scholar 

  • Dempsey RJ, Rao VLR (2003) Cytidinediphosphocholine treatment to decrease traumatic brain injury-induced hippocampal neuronal death, cortical contusion volume, and neurological dysfunction in rats. J Neurosurg 98:867–873

    Article  PubMed  CAS  Google Scholar 

  • Delerive P, De Bosscher K, Vanden Berghe W, Fruchart JC, Haegeman G, Staels B (2002) DNA binding-independent induction of IkappaBalpha gene transcription by PPARalpha. Mol Endocrinol 16:1029–1039

    Article  PubMed  CAS  Google Scholar 

  • De Nicola AF, Labombarada F, Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schumacher M (2009) Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 30:173–187

    Article  PubMed  CAS  Google Scholar 

  • De Spiegelaere W, Cornillie P, Van den Broeck W (2009) Localization of erythropoietin in and around growing cartilage. Mol Cell Biochem 2009 Nov 12 [Epub ahead of print]

    Google Scholar 

  • Di Marzo V, De Petrocellis L, Sugiura T, Waku K (1996) Potential biosynthetic connections between the two cannabimimetic eicosanoids, anandamide and 2-arachidonoyl-glycerol, in mouse neuroblastoma cells. Biochem and Biophys Res Commun 227:281–288

    Article  CAS  Google Scholar 

  • Djebaili M, Guo Q, Pettus EH, Hoffman SW, Stein DG (2005) The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma 22:106–118

    Article  PubMed  Google Scholar 

  • Eckartdt KU, Kurtz A (2005) Regulation of erythropoietin production. Eur J Clin Invest 35(Suppl 3):13–19

    Article  Google Scholar 

  • Endres M (2005) Statins and stroke. J Cereb Blood Flow Metab 25:1093–1110

    Article  PubMed  CAS  Google Scholar 

  • Endres M (2006) Statins: potential new indications in inflammatory conditions. Atheroscler Suppl 7:31–35

    Article  PubMed  CAS  Google Scholar 

  • Eshhar N, Striem S, Kohen R, Tirosh O, Biegon A (1995) Neuroprotectant and antioxidant activities of HU-211, a novel NMDA receptor antagonist. Eur J Pharmacol 283:19–29

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Salzman SK (1994) Experimental pharmacology. In: Salzman SK, Faden AI (eds) The neurobiology of central nervous system trauma. Oxford University Press, New York, Oxford, pp 227–244

    Google Scholar 

  • Faden AI, Fox GB, Fan L, Araldi GL, Qiao L, Wang S, Kozikowski AP (1999) Novel TRH analog improves motor and cognitive recovery after traumatic brain injury in rodents. Am J Physiol 277:R1196–R1204

    PubMed  CAS  Google Scholar 

  • Faden AI (2002) Neuroprotection and traumatic brain injury:theoretical option or realistic proposition. Curr Opin Neurol 15:707–712

    Article  PubMed  Google Scholar 

  • Faden AI, Movsesyan VA, Knoblach SM, Ahmed F, Cernak I (2005) Neuroprotective effects of novel small peptides in vitro and after brain injury. Neuropharmacology 49:410–424

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29:1961–1977

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks, LA (2009) Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik NK, Ray SK (eds) Handbook of Neurochemistry and Molecular Neurobiology vol 24, 3rd edn. Springer, New York, NY, pp 71–89

    Google Scholar 

  • Farooqui AA (2009a) Hot topics in neural membrane lipidology. Springer, New York, NY

    Book  Google Scholar 

  • Farooqui AA (2009b) Beneficial effects of fish oil on human brain. Springer, New York, NY

    Book  Google Scholar 

  • Feigenbaum JJ, Bergmann F, Richmond SA, Mechoulam R, Nadler V, Kloog Y, Sokolovsky M (1989) Nonpsychotropic cannabinoid acts as a functional N-methyl-D-aspartate receptor blocker. Proc Natl Acad Sci USA 86:9584–9587

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez EM, Sanz-Blasco S, Karachitos A, Bandez MJ, Fernandez-Gomez FJ, Perez-Alvarez S, de Mera RM, Jordan MJ, Aguirre N, Galindo MF, Villalobos C, Navarro A, Kmita H, Jordán J (2010) Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol 79:239–2350

    Article  PubMed  CAS  Google Scholar 

  • Gervois P, Kleemann R, Pilon A, Percevault F, Koenig W, Staels B, Kooistra T (2004) Global suppression of IL-6-induced acute phase response gene expression after chronic in vivo treatment with the peroxisome proliferator-activated receptor-alpha activator fenofibrate. J Biol Chem 279:16154–16160

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez SL, Labombarda F, Gonzalez Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2004) Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 125:605–614

    Article  PubMed  CAS  Google Scholar 

  • Grände PO, Reinstrup P, Romner B (2009) Active cooling in traumatic brain-injured patients: a questionable therapy? Acta Anaesthesiol Scand 53:1233–1238 Epub 2009 Aug 13

    Article  PubMed  Google Scholar 

  • Grasso G, Sfacteria A, Meli F, Fodale V, Buemi M, Iacopino DG (2007) Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res 1182:99–105

    Article  PubMed  CAS  Google Scholar 

  • Hansen HH, Schmid PC, Bittigau P, Lastres-Becker I, Berrendero F, Manzanares J, Ikonomidou C, Schmid HH, Fernández-Ruiz JJ, Hansen HS (2001a) Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J Neurochem 78:1415–1427

    Article  PubMed  CAS  Google Scholar 

  • Hansen HH, Ikonomidou C, Bittigau P, Hansen SH, Hansen HS (2001b) Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death. J Neurochem 76:39–46

    Article  PubMed  CAS  Google Scholar 

  • Hansen HS, Moesgaard B, Petersen G, Hansen HH (2002) Putative neuroprotective actions of N-acyl-ethanolamines. Pharmacol Ther 95:119–126

    Article  PubMed  CAS  Google Scholar 

  • He J, Evans CO, Hoffman SW, Oyesiku MN, Stein DG (2004) Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol 189:404–412

    Article  PubMed  CAS  Google Scholar 

  • Homayoun P, Parkins NE, Soblosky J, Carey ME, Rodriguez de Turco EB, Bazan NG (2000) Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated free fatty acids and diacylglycerols. Neurochem Res 25:269–276

    Article  PubMed  CAS  Google Scholar 

  • Homayoun P, Rodriguez de Turco EB, Parkins NE, Lane DC, Soblosky J, Carey ME, Bazan NG (1997) Delayed phospholipid degradation in rat brain after traumatic brain injury. J Neurochem 69:199–205

    Article  PubMed  CAS  Google Scholar 

  • Homsi S, Federico F, Croci N, Palmier B, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M (2009) Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 1291:122–132

    Article  PubMed  CAS  Google Scholar 

  • Hou ST, Jiang SX, Smith RA (2008) Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int Rev Cell Mol Biol 267:125–181

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Li Y, Fang M, Wai MS, Yew DT (2009) Exogenous progesterone: a potential therapeutic candidate in CNS injury and neurodegeneration. Curr Med Chem 16:1418–1425

    Article  PubMed  CAS  Google Scholar 

  • Hua XY, Svensson CI, Matsui T, Fitzsimmons B, Yaksh TL, Webb M (2005) Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci 22:2431–2440

    Article  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Ann Rev Biochem 72:609–642

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Solano J, He D, Loutfi M, Dietrich WD, Kuluz JW (2009) Traumatic injury activates MAP kinases in astrocytes: mechanisms of hypothermia and hyperthermia. J Neurotrauma 26:1535–1545

    Article  PubMed  Google Scholar 

  • Huh JW, And Raghupathi R (2009) New concepts in treatment of pediatric traumatic brain injury. Anesthesiol Clin 27:213–240

    Article  PubMed  CAS  Google Scholar 

  • Hutchison JS, Ward RE, Lacroix J, Hébert PC, Barnes MA, Bohn DJ, Dirks PB, Doucette S, Fergusson D, Gottesman R et al (2008) Hypothermia therapy after traumatic brain injury in children. N Engl J Med 358:2447–2456

    Article  PubMed  CAS  Google Scholar 

  • Hyong A, Jadhav V, Lee S, Tong W, Rowe J, Zhang JH, Tang J (2008) Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents. Brain Res 1215:218–224

    Article  PubMed  CAS  Google Scholar 

  • Jain KK (2009) Cell therapy for CNS trauma. Mol Biotechnol 2009 Mar 28 [Epub ahead of print]

    Google Scholar 

  • Johnson-Anuna LN, Eckert GP, Franke C, Igbavboa U, Müller WE, Wood WG (2007) Simvastatin protects neurons from cytotoxicity by up-regulating Bcl-2 mRNA and protein. J Neurochem 101:77–86

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Anuna LN, Eckert GP, Keller JH, Igbavboa U, Franke C, Fechner T, Schubert-Zsilavecz M, Karas M, Müller WE, Wood WG (2005) Chronic administration of statins alters multiple gene expression patterns in mouse cerebral cortex. J Pharmacol Exp Ther 312:786–793

    Article  PubMed  CAS  Google Scholar 

  • Kochanek PM, Bayir H, Jenkins LW (2008) Molecular biology of brain injury. In: Nichols D (ed) Textbook of pediatric intensive care, 4th edn. Lippincott Williams & Wilkins, Pennsylvania, PA, pp 826–845

    Google Scholar 

  • Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196:168–179

    Article  PubMed  CAS  Google Scholar 

  • Kirsch C, Eckert GP, Muller EE (2003) Brain cholesterol, statins and Alzheimer’s Disease. Pharmacopsychiatry 36(Suppl 2):S113–S119

    PubMed  CAS  Google Scholar 

  • Knoller N, Levi L, Shoshan I, Reichenthal E, Razon N, Rappaport ZH, Biegon A (2002) Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit Care Med 30:548–554

    Article  PubMed  CAS  Google Scholar 

  • Lenzlinger PM, Saatman K, Raghupathi R (2001) Overview of basic mechanisms underlying neuropathological consequences of head trauma. In: Miller G, Hayes R (eds) Head trauma – basic, preclinical, and clinical directions. Wiley-Liss, Hoboken, NJ, pp 3–36

    Google Scholar 

  • Leonhardt SA, Boonyaratanakornkit V, Edwards DP (2003) Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids 68:761–770

    Article  PubMed  CAS  Google Scholar 

  • Longhi L, Zanier ER, Royo N, Stocchetti N, McIntosh TK (2005) Stem cell transplantation as a therapeutic strategy for traumatic brain injury. Transpl Immunol 15:143–148

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, Mahmood A, Chen J, Li Y, Chopp M (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24:1132–1146

    Article  PubMed  Google Scholar 

  • Maas AI (2001) Neuroprotective agents in traumatic brain injury. Expert Opin Investig Drugs 10:753–767

    Article  PubMed  CAS  Google Scholar 

  • Maas AI, Murray G, Henney H 3rd, Kassem N, Legrand V, Mangelus M, Muizelaar JP, Stocchetti N, Knoller N Pharmos TBI Investigators (2006) Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 5:38–45

    Article  PubMed  CAS  Google Scholar 

  • Machado LS, Kozak A, Erqul A, Hess DC, Borlougan CV, Fagan SC (2006) Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC 7:56

    Google Scholar 

  • Maegele M, Schaefer U (2008) Stem cell-based cellular replacement strategies following traumatic brain injury (TBI). Minim Invasive Ther Allied Technol 17:119–131

    Article  PubMed  Google Scholar 

  • Marchand F, Tsantoulas C, Singh D, Grist J, Clark AK, Bradbury EJ, McMahon SB (2009) Effects of Etanercept and Minocycline in a rat model of spinal cord injury. Eur J Pain 13:673–681

    Article  PubMed  CAS  Google Scholar 

  • MacNevin CJ, Atif F, Sayeed I, Stein DG, Liotta DC (2009) Development and screening of water-soluble analogues of progesterone and allopregnanolone in models of brain injury. J Med Chem 52:6012–6023

    Article  PubMed  CAS  Google Scholar 

  • Mahmood A, Gousser A, Kazmi H, Qu C, Lu D, Chopp M (2009a) Long-term benefits after treatment of traumatic brain injury with simvastatin in rats. Neurosurg 65:187–191

    Article  Google Scholar 

  • Mahmood A, Lu D, Qu C, Goussev A, Zhang Y, Chopp M (2009b) Treatment of traumatic brain injury in rats with erythropoietin and carbamylated erythropoietin. J Neurosurg 107:392–397

    Google Scholar 

  • Mani S (2008) Progestin receptor subtypes in the brain: the known and the unknown. Endocrinology 149:2750–2756

    Article  PubMed  CAS  Google Scholar 

  • Marx N, Sukhova GK, Collins T, Libby P, Plutzky J (1999) PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99:3125–3131

    Article  PubMed  CAS  Google Scholar 

  • Matis GK, Birbillis TA (2009) Erythropoietin in spinal cord injury. Eur Spine J 18:314–323

    Article  PubMed  Google Scholar 

  • McIntosh TK, Saatman KE, Raghupathi R, Graham DI, Smith DH, Lee VM, Trojanowski JQ (1998) The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24:251–267

    Article  PubMed  CAS  Google Scholar 

  • McKenna NJ, O’Malley BW (2002) Minireview: nuclear receptor coactivators—an update. Endocrinology 143:2461–2465

    Article  PubMed  CAS  Google Scholar 

  • Mir C, Clotet J, Aledo R, Durany N, Argemi J, Lozano R, Cervos-Navarro J, Casals N (2003) CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci 20:53–59

    Article  PubMed  CAS  Google Scholar 

  • Monga V, Meena CL, Kaura N, Jain R (2008) Chemistry and biology of thyrotropin-releasing hormone (TRH) and its analogs. Curr Med Chem 15:2718–2733

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa T, Takahashi H, Nishijima K, Shimura M, Fuse N, Tamai M, Hafezi-Moghadam A, Nishida K (2007) Pitavastatin prevents NMDA-induced retinal ganglion cell death by suppressing leukocyte recruitment. J Neurochem 100:1018–1031

    Article  PubMed  CAS  Google Scholar 

  • Nilsen J, Brinton RD (2002) Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norprogesterone and antagonism by medroxyprogesterone acetate. Endocrinology 143:205–212

    Article  PubMed  CAS  Google Scholar 

  • Noguchi CT, Asavaritikrai P, Teng R, Jia Y (2007) Role of erythropoietin in the brain. Crit Rev Oncol Hematol 64:159–171

    Article  PubMed  Google Scholar 

  • Nolan S (2005) Traumatic brain injury: a review. Ctrt Care Nurse 28:188–194

    Google Scholar 

  • O’Connor CA, Cernak I, Vink R (2005) Both estrogen and progesterone attenuate edema formation following diffuse traumatic brain injury in rats. Brain Res 1062:171–174

    Article  PubMed  CAS  Google Scholar 

  • Owen GI, Richer JK, Tung L, Takimoto G, Horwitz KB (1998) Progesterone regulates transcription of the p21(WAF1) cyclindependent kinase inhibitor gene through Sp1 and CBP/p300. J Biol Chem 273(1998):10696–10701

    Article  PubMed  CAS  Google Scholar 

  • Oz M (2006) Receptor-independent effects of endocannabinoids on ion channels. Curr Pharm Design 12:227–239

    Article  CAS  Google Scholar 

  • Pettus EH, Wright DW, Stein DG, Hoffman SW (2005) Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res 1049:112–119

    Article  PubMed  CAS  Google Scholar 

  • Philips MF, Muir JK, Saatman KE, Raghupathi R, Lee VM, Trojanowski JQ, McIntosh TK (1999) Survival and integration of transplanted postmitotic human neurons following experimental brain injury in immunocompetent rats. J Neurosurg 90:116–124

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Christman CW (1995) The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma 12:555–564

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB (1998) The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors, Proc. Soc Exp Biol Med 217:420–434

    CAS  Google Scholar 

  • Rajanikant GK, Zemke D, Kassab M, Majid A (2007) The therapeutic potential of statins in neurological disorders. Curr Med Chem 14:103–112

    Article  PubMed  CAS  Google Scholar 

  • Rao JS, Ertley RN, Lee H-J, DeMar JC Jr, Arnold JT, Repoport SI, Bazinet RP (2007) N-3 Polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MARK-dependent mechanism. Mol Psychiatry 12:36–46

    Article  PubMed  CAS  Google Scholar 

  • Roof RL, Duvdevani R, Stein DG (1992) Progesterone treatment attenuates brain edema following contusion injury in male and female rats. Restor Neurol Neurosci 4:425–427

    PubMed  CAS  Google Scholar 

  • Roof RL, Hoffman SW, Stein DG (1997) Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Mol Chem Neuropathol 31:1–11

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 22:410–416

    Article  PubMed  CAS  Google Scholar 

  • Sahuguillo J, Bietro A, Amoros S, Poca MA, Baguena M, Ibanez J, Noguer M, Garnacho A (2001) The use of moderate hypothermia in the treatment of patients with severe craniocerebral trauma. Neurocirgia (Astur) 12:23–35

    Google Scholar 

  • Sahuguillo J, Vilalta A (2009) Cooling the injured brain: how does moderate hypothermia influence the pathophysiology of traumatic brain injury. Curr Pharm Des 13:2310–2322

    Article  Google Scholar 

  • Salim A, Hadjizacharea P, Brown C, Inaba K, Teixeira PG, Chan L, Rhee P, Demetriades D (2008) Significance of troponin elevation after severe traumatic brain injury. J Trauma 64:46–57

    Article  PubMed  CAS  Google Scholar 

  • Sayeed I, Stein DG (2009) Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. Prog Brain Res 175:219–237

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Sitruk-ware R, De Nicola AF (2008) Progesterone and progestins: neuroprotection and myelin repair. Curr Opin Pharmacol 8:740–746

    Article  PubMed  CAS  Google Scholar 

  • Sensi SL, Jeng JM (2004) Rethinking the excitotoxic ionic milieu: the emerging role of Zn2+ in ischemic neuronal injury. Curr Mol Med 4:87–111

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN (2005a) Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Metab Care 8:115–121

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN (2005b) Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol Ther 105:7–21

    Article  PubMed  CAS  Google Scholar 

  • Shin BS, Won SJ, Yoo BH, Kauppinen TM, Suh SW (2009) Prevention of hypoglycemia-induced neuronal death by hypothermia. J Cereb Blood Flow Metab 2009 Oct 28 [Epub ahead of print]

    Google Scholar 

  • Shohami E, Novikov M, Mechoulam R (1993) A nonpsychotropic cannabinoid, HU-211, has cerebrovascular effects after closed head injury in the rat. J Neurotrauma 10:109–119

    Article  PubMed  CAS  Google Scholar 

  • Shohami E, Beit-Yannai E, Horowitz M, Kohen R (1997) Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood Flow Metab 17:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Siren AL, Fasshauer T, Bartels C, Ehrenreich H (2009) Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics 6:108–127

    Article  PubMed  CAS  Google Scholar 

  • Skaper SD, Moore SE, Walsh FS (2001) Cell signalling cascades regulating neuronal growth-promoting and inhibitory cues. Prog Neurobiol 65:593–608

    Article  PubMed  CAS  Google Scholar 

  • Stockmann C, Fandrey J (2006) Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. Clin Exp Pharmacol Physiol 33:968–979

    Article  PubMed  CAS  Google Scholar 

  • Stoica BA, Byrnes KR, Faden AI (2009) Cell cycle activation and CNS injury. Neurotox Res 16:221–237

    Article  PubMed  Google Scholar 

  • Sun H, Huang Y, Yu X, Li Y, Yang J, Li R, Deng Y, Zhao G (2008) Peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine-induced status epilepticus in rats. Int J Neurosci 26:505–515

    Article  CAS  Google Scholar 

  • Ueda N, Okamoto Y, Tsuboi K (2005) Endocannabinoid-related enzymes as drug targets with special reference to N-acylphosphatidylethanolamine-hydrolyzing phospholipase D. Curr Med Chem 2005(12):1413–1422

    Article  Google Scholar 

  • Vaughan CJ (2003) Prevention of stroke and dementia with statins: effects beyond lipid lowering. Am J Cardiol 91:23B–29B

    Article  PubMed  CAS  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590

    Article  PubMed  Google Scholar 

  • Vuletic S, Riekse RG, Marcovina SM, Peskind ER, Hazzard WR, Albers JJ (2006) Statins of different brain penetrability differentially affect CSFPLTP activity. Dement Geriatr Cogn Disord 22:392–398

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Molteni R, Ying Z, Gomez-Pinilla F (2003) A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience 119:365–375

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004a) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21:1457–1467

    Article  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004b) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707

    Article  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2005) Omega-3 fatty acids supplementation restores homeostatic mechanisms disrupted by traumatic brain injury. J Neurotrauma 22:1212

    Google Scholar 

  • Wu H, Jiang H, Xiong Y, Qu C, Li B, Mahmood A, Zhou D, Chopp M (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25:130–139

    Article  PubMed  Google Scholar 

  • Wu J, Yang S, Xi G, Fu G, Keep RF, Hua Y (2009) Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurol Res 31:183–188

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Lu D, Qu C (2008) Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice. J Neurosurg 109:510–521

    Article  PubMed  Google Scholar 

  • Xiong Y, Mahmood A, Meng Y, Zhang Y, Qu C, Schallert T, Chopp M (2009) Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J Neurosurg 2009 Oct 9 [Epub ahead of print]

    Google Scholar 

  • Yamashita T (2007) Molecular mechanism and regulation of axon growth inhibition. Brain Nerve 59:1347–1353

    PubMed  CAS  Google Scholar 

  • Yang D, Xie P, Guo S, Li H (2009) Induction of MAPK phosphatase-1 by hypothermia inhibits TNF-{alpha}-induced endothelial barrier dysfunction and apoptosis. Cardiovasc Res Oct 22 [Epub ahead of print]

    Google Scholar 

  • Yao XL, Liu J, Lee E, Ling GS, McCabe JT (2005) Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. J Neurotrauma 22:656–668

    Article  PubMed  Google Scholar 

  • Zafonte R, Friedewald WT, Lee SM, Levin B, Diaz-Arrastia R, Ansel B, Eisenberg H, Timmons SD, Temkin N, Novack T, Ricker J, Merchant R, Jallo J (2009) The citicoline brain injury treatment (COBRIT) trial: design and methods. J Neurotrauma 26:2207–2216

    Article  PubMed  Google Scholar 

  • Zhu L, Wang HD, Yu XG, Jin W, Qiao L, Lu TJ, Hu ZL, Zhou J (2009) Erythropoietin prevents zinc accumulation and neuronal death after traumatic brain injury in rat hippocampus: in vitro and in vivo studies. Brain Res 1289:96–105

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2010). Potential Neuroprotective Strategies for Traumatic Brain Injury. In: Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6652-0_7

Download citation

Publish with us

Policies and ethics