Skip to main content

Neurochemical Aspects of Traumatic Brain Injury

  • Chapter
  • First Online:
Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases
  • 682 Accesses

Abstract

Traumatic brain injury is a silent epidemic and major source of death and disability worldwide in modern society. The Centers for Disease Control and Prevention estimates that approximately 1.4 million US individuals sustain traumatic brain injuries (TBIs) per year of which, approx 50,000 people die from TBI each year and 85,000 people suffer long-term disabilities. In the USA, more than 5.3 million people live with long-term disability with dramatic impacts on their own and their families’ lives. The socioeconomic cost of treating and rehabilitating TBI patients exceeds $56 billion. This economic cost and rate of mortality has generated considerable interest in elucidating the complex molecular mechanism underlying cell death and dysfunction after TBI. Most common causes of TBI are car accidents, bicycle accidents (more than 50%), falls and sport injuries (20–25%), and violence and domestic abuse (including shaken baby syndrome) (20–25%). TBI produces physical, cognitive, emotional, and behavioral effects in the traumatized subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agoston DV, Gyorgy A, Eidelman O, Pollard HB (2009) Proteomic biomarkers for blast neurotrauma: targeting cerebral edema, inflammation, and neuronal death cascades. J Neurotrauma 26:901–911

    Article  PubMed  Google Scholar 

  • Ahn MJ, Sherwood ER, Prough DS, Lin CY, DeWitt DS (2004) The effects of traumatic brain injury on cerebral blood flow and brain tissue nitric oxide levels and cytokine expression. J Neurotrauma 21:1431–1442

    Article  PubMed  Google Scholar 

  • Alcalá-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH, McLoon LK (2009) J Drug Target 2009 Oct 6 [Epub ahead of print]

    Google Scholar 

  • Amankulor NM, Hambardzumyan D, Pyonteck SM, Becher OJ, Joyce JA, Holland EC (2009) Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29:10299–10308

    Article  PubMed  CAS  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668

    Article  PubMed  CAS  Google Scholar 

  • Atkins CM, Oliva AA Jr, Alonso OF, Pearse DD, Bramlett HM, Dietrich WD (2007a) Modulation of the cAMP signaling pathway after traumatic brain injury. Exp Neurol 208:145–158

    Article  PubMed  CAS  Google Scholar 

  • Atkins CM, Oliva AA Jr, Alonso OF, Chen S, Bramlett HM, Hu BR, Dietrich WD (2007b) Hypothermia treatment potentiates ERK1/2 activation after traumatic brain injury. Eur J Neurosci 26:810–819

    Article  PubMed  Google Scholar 

  • Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu BR (2009a) Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J Cereb Blood Flow Metab 26:1507–1518

    Article  CAS  Google Scholar 

  • Atkins CM, Falo MC, Alonso OF, Bramlett HM, Dietrich WD (2009b) Deficits in ERK and CREB activation in the hippocampus after traumatic brain injury. Neurosci Lett 459:52–56

    Article  PubMed  CAS  Google Scholar 

  • Auger C, Attwell D (2000) Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28:547–558

    Article  PubMed  CAS  Google Scholar 

  • Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G (2001) Chemokines and their receptors in the central nervous system. Front Neuroendocrinol 22:147–184

    Article  PubMed  CAS  Google Scholar 

  • Bales JW, Ma X, Yan HQ, Jenkins LW, Dixon CE (2010) Expression of protein phosphatase 2B (calcineurin) subunit A isoforms in rat hippocampus after traumatic brain injury. J Neurotrauma 27:109–120

    Article  PubMed  Google Scholar 

  • Beer R, Franz G, Srinivasan A, Hayes RL, Pike BR, Newcomb JK, Zhao X, Schmutzhard E, Poewe W, Kampfl A (2000) Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury. J Neurochem 75:1264–1273

    Article  PubMed  CAS  Google Scholar 

  • Bigford GE, Alonso OF, Dietrich D, Keane RW (2009) A novel protein complex in membrane rafts linking the NR2B glutamate receptor and autophagy is disrupted following traumatic brain injury. J Neurotrauma 26:703–720

    Article  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  PubMed  CAS  Google Scholar 

  • Brophy GM, Pineda JA, Papa L, Lewis SB, Valadka AB, Hannay HJ, Heaton SC, Demery JA, Liu MC, Tepas JJ 3rd, Gabrielli A, Robicsek S, Wang KK, Robertson CS, Hayes RL (2009) αII-Spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma 26:471–479

    Article  PubMed  Google Scholar 

  • Buki A, Farkas O, Doczi T, Povlishock JT (2003) Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury. J Neurotrauma. 20:261–268

    Google Scholar 

  • Callewaere C, Banisadr G, Rostene W, Parsadaniantz SM (2007) Chemokines and chemokine receptors in the brain: implication in neuroendocrine regulation. J Mol Endocrinol 38:358–363

    Article  CAS  Google Scholar 

  • Cardali S, Mangeri R (2006) Detection of αII-spectrin and breakdown products in humans after severe traumatic brain injury. J Neurosurg Sci 50:25–31

    PubMed  CAS  Google Scholar 

  • Carragher NO (2006) Calpain inhibition: a therapeutic strategy targeting multiple disease states. Curr Pharm Des 12:615–638

    Article  PubMed  CAS  Google Scholar 

  • Cartagena CM, Ahmed F, Burns MP, Pajoohesh-Ganji A, Pak DT, Faden AI, Rebeck GW (2008) Cortical injury increases cholesterol 24S hydroxylase (Cyp46) levels in the rat brain. J Neurotrauma 25:1087–1098

    Article  PubMed  Google Scholar 

  • Chen G, Shi J, Wei Jin W, Wang L, Xie W, Sun J, Hang C (2008b) Progesterone administration modulates TLRs/NF-κB signaling pathway in rat brain after cortical contusion. Ann Clin Lab Sci 38:65–74

    PubMed  CAS  Google Scholar 

  • Chen Y, Miles DK, Hoang T, Shi J, Hurlock E, Kernie SG, Lu QR (2008a) The basic helix-loop-helix transcription factor olig2 is critical for reactive astrocyte proliferation after cortical injury. J Neurosci 28:10983–10989

    Article  PubMed  CAS  Google Scholar 

  • Cherian L, Hlatky R, Robertson CS (2004) Nitric oxide in traumatic brain injury. Brain Path 14:195–201

    Article  CAS  Google Scholar 

  • Chiaretti A, Antonelli A, Genovese O, Pezzotti P, Rocco CD, Viola L, Riccardi R (2008) Nerve growth factor and doublecortin expression correlates with improved outcome in children with severe traumatic brain injury. J Trauma 65:80–85

    Article  PubMed  CAS  Google Scholar 

  • Chumakov AM, Silla A, Williamson EA, Koeffler HP (2007) Modulation of DNA binding properties of CCAAT/enhancer binding protein epsilon by heterodimer formation and interactions with NFkappaB pathway. Blood 109:4209–4219

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  • Crawford F, Wood M, Ferguson S, Mathura V, Gupta P, Humphrey J, Mouzon B, Laporte V, Margenthaler E, O‘Steen B, Hayes R, Roses A, Mullan M (2009) Apolipoprotein E-genotype dependent hippocampal and cortical responses to traumatic brain injury. Neuroscience 159:1349–1362

    Article  PubMed  CAS  Google Scholar 

  • Creagh EM, Conroy H, Martin SJ (2003) Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193:10–21

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P, Daly MP, Faden AI (1988) Free amino acid levels in laminectomized and traumatized rat spinal cord. Trans Am Soc Neurochem 19:176

    Google Scholar 

  • de Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW (2009) Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 29:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Dhillon HS, Donaldson D, Dempsey RJ, Prasad MR (1994) Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury. J Neurotrauma 11:405–415

    Article  PubMed  CAS  Google Scholar 

  • Dhillon HS, Dose JM, Prasad MR (1996) Regional generation of leukotriene C4 after experimental brain injury in anesthetized rats. J Neurotrauma 13:781–789

    Article  PubMed  CAS  Google Scholar 

  • Ding JY, Kreipke CW, Schafer P, Schafer S, Speirs SL, Rafols JA (2009) Synapse loss regulated by matrix metalloproteinases in traumatic brain injury is associated with hypoxia inducible factor-1alpha expression. Brain Res 1268:125–134

    Article  PubMed  CAS  Google Scholar 

  • Ellis RC, Earnhardt JN, Hayes RL, Wang KKW, Anderson DK (2004) Cathepsin B mRNA and protein expression following contusion spinal cord injury in rats. J Neurochem 88:689–697

    Article  PubMed  CAS  Google Scholar 

  • Farkas O, Polgar B, Szekeres-Bartho J, Doczi T, Povlishock JT, Buki A (2005) Spectrin breakdown products in the cerebrospinal fluid in severe head injury – Preliminary observations. Acta Neurochir (Wien) 147:855–861

    Article  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29:1961–1977

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in brain. Springer, New York, NY

    Book  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York, NY

    Google Scholar 

  • Farooqui AA (2009) Hot topics in neural membrane lipidology. Springer, New York, NY

    Book  Google Scholar 

  • Farooqui AA, Horrocks LA (2009) Glutamate and cytokine-mediated alterations of phospholipids head injury and spinal cord trauma. In: Banik NK (ed) Handbook of neurochemistry and molecular neurobiology, vol 24. Springer, New York, NY, pp 71–89

    Chapter  Google Scholar 

  • Fernandez AM, Fernandez S, Carrero P, Garcia-Garcia M, Torres-Aleman I (2007) Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci 27:8745–8756

    Article  PubMed  CAS  Google Scholar 

  • Fineman I, Hovda DA, Smith M, Yoshino A, Becker DP (1993) Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Res 624:94–102

    Google Scholar 

  • Ghirnikar RS, Lee YL, Eng LF (1998) Inflammation in traumatic brain injury: role of cytokines and chemokines. Neurochem Res 23:329–340

    Article  PubMed  CAS  Google Scholar 

  • Girard J, Panizzon K, Wallis RA (1996) Azelastine protects against CA1 traumatic neuronal injury in the hippocampal slice. Eur J Pharmacol 300:43–49

    Article  PubMed  CAS  Google Scholar 

  • Glantz SB, Cianci CD, Iyer R, Pradhan D, Wang KK, Morrow JS (2007) Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochemistry 46:502–513

    Article  PubMed  CAS  Google Scholar 

  • Gomes-Leal W, Corkill DJ, Freire MA, Picanço-Diniz CW, Perry VH (2004) Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp Neurol 190:456–467

    Article  PubMed  CAS  Google Scholar 

  • Gopez JJ, Yue H, Vasudevan R, Malik AS, Fogelsanger LN, Lewis S, Panikashvili D, Shohami E, Jansen SA, Narayan RK, Strauss KI (2005) Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 56:590–604

    Article  PubMed  Google Scholar 

  • Grossetete M, Phelps J, Arko L, Yonas H, Rosenberg GA (2009) Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery 65:702–708

    Article  PubMed  Google Scholar 

  • Hang CH, Chen G, Shi JX, Zhang X, Li JS (2006) Cortical expression of nuclear factor kappaB after human brain contusion. Brain Res 1109:14–21

    Article  PubMed  CAS  Google Scholar 

  • Harris LK, Black RT, Golden KM, Reeves TM, Povlishack JT, Phillips LL (2001) Traumatic brain injury-induced changes in gene expression and functional activity of mitochondrial cytochrome C oxidase. J Neurotrauma 18:993–1009

    Article  PubMed  CAS  Google Scholar 

  • Hayes KC, Hull TC, Delaney GA, Potter PJ, Sequeira KA, Campbell K, Popovich PG (2002) Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J Neurotrauma 19:753–761

    Article  PubMed  CAS  Google Scholar 

  • Hickey RW, Adelson PD, Johnnides MJ, Davis DS, Yu Z, Rose ME, Chang YF, Graham SH (2007) Cyclooxygenase-2 activity following traumatic brain injury in the developing rat. Pediatr Res 62:271–276

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand F, Pape HC, Krettek C (2005) The importance of cytokines in the posttraumatic inflammatory reaction. Unfallchirurg 108:793–794

    Article  PubMed  CAS  Google Scholar 

  • Homayoun P, Rodriguez de Turco EB, Parkins NE, Lane DC, Soblosky J, Carey ME, Bazan NG (1997) Delayed phospholipid degradation in rat brain after traumatic brain injury. J Neurochem 69:199–205

    Article  PubMed  CAS  Google Scholar 

  • Homayoun P, Parkins NE, Soblosky J, Carey ME, Rodriguez de Turco EB, Bazan NG (2000) Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated free fatty acids and diacylglycerols. Neurochem Res 25:269–276

    Article  PubMed  CAS  Google Scholar 

  • Israelsson C, Bengtsson H, Kylberg A, Kullander K, Lewén A, Hillered L, Ebendal T (2008) Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury. J Neurotrauma 25:959–974

    Article  PubMed  Google Scholar 

  • Jin W, Wang H, Yan W, Xu L, Wang X, Zhao X, Yang X, Chen G, Ji Y (2008) Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators Inflamm 2008:725174 Epub 2009 Jan 25

    Article  PubMed  CAS  Google Scholar 

  • Jupp OJ, Vandenabeele P, MacEwan DJ (2003) Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem J 374:453–461

    Article  PubMed  CAS  Google Scholar 

  • Kadhim HJ, Duchateau J, Sebire G (2008) Cytokines and brain injury: invited review. J Intensive Care Med 23:236–249

    Article  PubMed  Google Scholar 

  • Kane MJ, Citron BA (2009) Transcription factors as therapeutic targets in CNS disorders. Recent Pat Nanotechnol 4:190–199

    CAS  Google Scholar 

  • Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  • Khorooshi R, Babcock AA, Owens T (2008) NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury. J Immunol 181:7284–7291

    PubMed  CAS  Google Scholar 

  • Kim GM, Xu J, Xu JM, Song SK, Yan P, Ku G, Xu XM, Hsu CY (2001) Tumor necrosis factor receptor deletion reduces nuclear factor-kappa B activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J Neurosci 21:6617–6625

    PubMed  CAS  Google Scholar 

  • Kizhakke Madathil S, Evans HN, Saatman KE (2009) Temporal and regional changes in IGF-1/IGF-1R signaling in the mouse brain following traumatic brain injury. J Neurotrauma 26:2269–2278

    Article  Google Scholar 

  • Klementiev B, Novikova T, Korshunova I, Berezin V, Bock E (2008) The NCAM-derived P2 peptide facilitates recovery of cognitive and motor function and ameliorates neuropathology following traumatic brain injury. Eur J Neurosci 27:2885–2896

    Article  PubMed  CAS  Google Scholar 

  • Kunz T, Marklund N, Hillered L, Oliw EH (2002) Cyclooxygenase-2, prostaglandin synthases, and prostaglandin H2 metabolism in traumatic brain injury in the rat. J Neurotrauma 19:1051–1064

    Article  PubMed  Google Scholar 

  • Kupina NC, Detloff MR, Bobrowski WF, Snyder BJ, Hall ED (2003) Cytoskeletal protein degradation and neurodegeneration evolves differently in males and females following experimental head injury. Exp Neurol 180:55–73

    Article  PubMed  CAS  Google Scholar 

  • Kurz JE, Hamm RJ, Singleton RH, Povlishock JT, Churn SB (2005a) A persistent change in subcellular distribution of calcineurin following fluid percussion injury in the rat. Brain Res 1048:153–160

    Article  PubMed  CAS  Google Scholar 

  • Kurz JE, Parsons JT, Rana A, Gibson CJ, Hamm RJ, Churn SB (2005b) A significant increase in both basal and maximal calcineurin activity following fluid percussion injury in the rat. J Neurotrauma 22:476–490

    Article  PubMed  Google Scholar 

  • Lee JM, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism, J. Biochem Mol Biol 37:139–143

    Article  CAS  Google Scholar 

  • Leinhase I, Schmidt OI, Thurman JM, Hossini AM, Rozanski M, Taha ME, Scheffler A, John T, Smith W, Holers VM, Stahel PF (2006) Pharmacological complement inhibition at the C3 convertase level promotes neuronal survival, neuroprotective intracerebral gene expression, and neurological outcome after traumatic brain injury. Exp Neurol 199:454–464

    Article  PubMed  CAS  Google Scholar 

  • Leinhase I, Rozanski M, Harhausen D, Thurman JM, Schmidt OI, Hossini AM, Taha ME, Rittirsch D, Ward PA, Holers VM, Ertel W, Stahel PF (2007) Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice. J Neuroinflammation 4:13

    Article  PubMed  Google Scholar 

  • Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK (2009) The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 24:169–181

    Google Scholar 

  • Levi O, Lütjohann D, Devir A, von Bergmann K, Hartmann T, Michaelson DM (2005) Regulation of hippocampal cholesterol metabolism by apoE and environmental stimulation. J Neurochem 95:987–997

    Article  PubMed  CAS  Google Scholar 

  • Levy DE, Darnell JE Jr. (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  PubMed  CAS  Google Scholar 

  • Li S, Stys PK (2000) Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci 20:1190–1198

    PubMed  CAS  Google Scholar 

  • Matute C, Domercq M, Sánchez-Gómez MV (2006) Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53:212–224

    Article  PubMed  Google Scholar 

  • Mattson M, Culmsee C, Yu ZF (2000) Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 301:173–187

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG, Klegeris A, McGeer PL (2005) Inflammation, the complement system and the diseases of aging. Neurobiol Aging 26(Suppl 1):94–97

    Article  PubMed  CAS  Google Scholar 

  • McIntosh TK, Saatman KE, Raghupathi R, Graham DI, Smith DH, Lee VM, Trojanowski JQ (1998) The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24:251–267

    Article  PubMed  CAS  Google Scholar 

  • Mechoulam R, Shohami E (2007) Endocannabinoids and traumatic brain injury. Mol Neurobiol 36:68–74

    Article  PubMed  CAS  Google Scholar 

  • Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T (2007) Modulation of immune response by head injury. Injury 38:1392–1400

    Article  PubMed  Google Scholar 

  • Morioka M, Hamada J, Ushio Y, Miyamoto E (1999) Potential role of calcineurin for brain ischemia and traumatic injury. Prog Neurobiol 58:1–30

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 13:1441–1453

    PubMed  CAS  Google Scholar 

  • Osuna E, Perez-Carceles MD, Luna A, Pounder DJ (1992) Efficacy of cerebro-spinal fluid biochemistry in the diagnosis of brain insult. Forensic Sci Int 52:193–198

    Article  PubMed  CAS  Google Scholar 

  • Otani N, Nawashiro H, Fukui S, Ooigawa H, Ohsumi A, Toyooka T, Shima K (2007) Role of the activated extracellular signal-regulated kinase pathway on histological and behavioral outcome after traumatic brain injury in rats. J Clin Neurosci 14:42–48

    Article  PubMed  CAS  Google Scholar 

  • Ottens AK, Golden EC, Bustamante L, Hayes RL, Denslow ND, Wang KK (2008) Proteolysis of multiple myelin basic protein isoforms after neurotrauma: characterization by mass spectrometry. J Neurochem 104:1404–1414

    Article  PubMed  CAS  Google Scholar 

  • Panter SS, Yum SW, Faden AI (1990) Alteration in extracellular amino acids after traumatic spinal cord injury. Ann Neurol 27:96–99

    Article  PubMed  CAS  Google Scholar 

  • Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774

    Article  PubMed  Google Scholar 

  • Pavel J, Lukácová N, Marsala J, Marsala M (2001) The regional changes of the catalytic NOS activity in the spinal cord of the rabbit after repeated sublethal ischemia. Neurochem Res 26:833–839

    Article  PubMed  CAS  Google Scholar 

  • Pedersen MV, Helweg-Larsen RB, Nielsen FC, Berezin V, Bock E, Penkowa M (2008) The synthetic NCAM-derived peptide, FGL, modulates the transcriptional response to traumatic brain injury. Neurosci Lett 437:148–153

    Article  PubMed  CAS  Google Scholar 

  • Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H (2004) GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 21:1553–1561

    Article  PubMed  Google Scholar 

  • Pereire CFM, Resende de Oliveira C (2000) Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca2+ homeostasis. Neurosci Res 83:2758–2762

    Google Scholar 

  • Pfrieger FW (2003) Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? Bioessays 25:72–78

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    Article  PubMed  CAS  Google Scholar 

  • Pilitsis JG, Coplin WM, O‘Regan MH, Wellwood JM, Diaz FG, Fairfax MR, Michael DB, Phillis JW (2003) Free fatty acids in cerebrospinal fluids from patients with traumatic brain injury. Neurosci Lett 349:136–138

    Article  PubMed  CAS  Google Scholar 

  • Pike BR, Zhao X, Newcomb JK, Posmantur RM, Wang KK, Hayes RL (1998) Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. Neuroreport 9:2437–2442

    Article  PubMed  CAS  Google Scholar 

  • Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, Demery JA, Liu MC, Aikman JM, Akle V, Brophy GM, Tepas JJ, Wang KK, Robertson CS, Hayes RL (2007) Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma 24:354–366

    Article  PubMed  Google Scholar 

  • Plesnila N (2007) Decompression craniectomy after traumatic brain injury: recent experimental results. Prog Brain Res 161:393–400

    Article  PubMed  Google Scholar 

  • Plesnila N, von Baumgarten L, Retiounskaia M, Engel D, Ardeshiri A, Zimmermann R, Hoffmann F, Landshamer S, Wagner E, Culmsee C (2007) Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ 14:1529–1541

    Article  PubMed  CAS  Google Scholar 

  • Posmantur R, Hayes RL, Dixon CE, Taft WC (1994) Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J Neurotrauma 11:533–545

    Article  PubMed  CAS  Google Scholar 

  • Posmantur RM, Kampfl A, Liu S, Heck K, Taft WC, Clifton GL, Hayes RL (1996) Cytoskeletal derangements of cortical neuronal processes three hours after traumatic brain injury in rats: an immunofluorescence study. J Neuropathol Exp Neurol 55:68–80

    Article  PubMed  CAS  Google Scholar 

  • Praticò D, Reiss P, Tang LX, Sung S, Rokach J, McIntosh TK (2002) Local and systemic increase in lipid peroxidation after moderate experimental traumatic brain injury. J Neurochem 80:894–898

    Article  PubMed  Google Scholar 

  • Raghupathi R, McIntosh TK, Smith DH (1995) Cellular responses to experimental brain injury. Brain Path 5:437–442

    Article  CAS  Google Scholar 

  • Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J Neurotrauma 17:927–938

    Article  PubMed  CAS  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Path 14:215–222

    Article  Google Scholar 

  • Raivich G, Behrens A (2006) Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol 78:347–363

    Article  PubMed  CAS  Google Scholar 

  • Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365:561–575

    PubMed  CAS  Google Scholar 

  • Ray SK, Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:173–189

    Article  PubMed  CAS  Google Scholar 

  • Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Rev 42:169–185

    Article  PubMed  CAS  Google Scholar 

  • Ray SK (2006) Currently evaluated calpain and caspase inhibitors for neuroprotection in experimental brain ischemia. Curr Med Chem 13:3425–3440

    Article  PubMed  CAS  Google Scholar 

  • Rhodes JK, Sharkey J, Andrews PJ (2009) The temporal expression, cellular localization, and inhibition of the chemokines MIP-2 and MCP-1 after traumatic brain injury in the rat. J Neurotrauma 26:507–525

    Article  PubMed  Google Scholar 

  • Sandhir R, Puri V, Klein RM, Berman NE (2004) Differential expression of cytokines and chemokines during secondary neuron death following brain injury in old and young mice. Neurosci Lett 369:28–32

    Article  PubMed  CAS  Google Scholar 

  • Sandhir R, Berman NE (2009) Age-dependent response of CCAAT/enhancer binding proteins following traumatic brain injury in mice. Neurochem Int 2009 Oct 12 [Epub ahead of print]

    Google Scholar 

  • Schwab JM, Seid K, Schluesener HJ (2001) Traumatic brain injury induces prolonged accumulation of cyclooxygenase-1 expressing microglia/brain macrophages in rats. J Neurotrauma 18:881–890

    Article  PubMed  CAS  Google Scholar 

  • Schwab JM, Beschorner R, Meyermann R, Gözalan F, Schluesener HJ (2002) Persistent accumulation of cyclooxygenase-1-expressing microglial cells and macrophages and transient upregulation by endothelium in human brain injury. J Neurosurg 96:892–899

    Article  PubMed  CAS  Google Scholar 

  • Schuhmann MU, Mokhtarzadeh M, Stichtenoth DO, Skardelly M, Klinge PM, Gutzki FM, Samii M, Brinker T (2003) Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury. Neurol Res 25:481–491

    Article  PubMed  CAS  Google Scholar 

  • Shapira M, Licht A, Milman A, Pick CG, Shohami E, Eldar-Finkelman H (2007) Role of glycogen synthase kinase-3beta in early depressive behavior induced by mild traumatic brain injury. Mol Cell Neurosci 34:571–577

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Zhuang Y, Ying Z, Wu A, Gomez-Pinilla F (2009) Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience 161:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Shohami E, Shapira Y, Sidi A, Cotev S (1987) Head injury induces increased prostaglandin synthesis in rat brain. J Cereb Blood Flow Metab 7:58–63

    Article  PubMed  CAS  Google Scholar 

  • Shohami E, Shapira Y, Yadid G, Reisfeld N, Yedgar S (1989) Brain phospholipase A2 is activated after experimental closed head injury in the rat. J Neurochem 53:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • Sifringer M, Stefovska V, Zentner I, Hansen B, Stepula K, Knaute C, Marzahn J, Ikonomidou C (2007) The role of matrix metalloproteinases in infant traumatic brain injury. Neurobiol Dis 25:526–535

    Article  PubMed  CAS  Google Scholar 

  • Siman R, Toraskar N, Dang A, McNeil E, McGarvey M, Plaum J, Maloney E, Grady MS (2009) A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J Neurotrauma 26:1867–1877

    Article  PubMed  Google Scholar 

  • Simons K, Ikonen E (2000) How cells handle cholesterol? Science 290:1721–1726

    Article  PubMed  CAS  Google Scholar 

  • Skaper SD (2008) The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 7:46–62

    Article  PubMed  CAS  Google Scholar 

  • Strauss KI, Narayan RK, Raghupathi R (2004) Common patterns of bcl-2 family gene expression in two traumatic brain injury models. Neurotox Res 6:333–342

    Article  PubMed  Google Scholar 

  • Sun D, Newman TA, Perry VH, Weller RO (2004) Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathol Appl Neurobiol 30:374–384

    Article  PubMed  CAS  Google Scholar 

  • Sundström E, Mo LL (2002) Mechanisms of glutamate release in the rat spinal cord slices during metabolic inhibition. J Neurotrauma 19:257–266

    Article  PubMed  Google Scholar 

  • Svetlov SI, Larner SF, Kirk DR, Atkinson J, Hayes RL, Wang KK (2009) Biomarkers of blast-induced neurotrauma: profiling molecular and cellular mechanisms of blast brain injury. J Neurotrauma 26:913–921

    Article  PubMed  Google Scholar 

  • Szmydynger-Chodobska J, Strazielle N, Zink BJ, Ghersi-Egea JF, Chodobski A (2009) The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J Cereb Blood Flow Metab 29:1503–1516

    Article  PubMed  CAS  Google Scholar 

  • Takadera T, Yumoto H, Tozuka Y, Ohyashiki T (2002) Prostaglandin E2 induces caspase-dependent apoptosis in rat cortical cells. Neurosci Lett 317:61–64

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Mizuno T, Zhang GQ, Wang JY, Kawanokuchi J, Kuno R, Suzumura A (2005) Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 280:10444–10454

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Ueno M, Yamashita T (2009) Engulfment of axon debris by microglia requires p38 MAPK activity. J Biol Chem 284:21626–21636

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi K, Takebayashi H, Manabe T, Tanaka KF, Makinodan M, Yamauchi T, Makinodan E, Matsuyoshi H, Okuda H, Ikenaka K, Wanaka A (2008) Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J Neurosci Res 86:3494–3502

    Article  PubMed  CAS  Google Scholar 

  • Van Santbrink H, Schouten JW, Steyerberg EW, Avezaat CJ, Maas AL (2002) Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period. Acta Neurochir (Wien) 144:1141–1149

    Article  Google Scholar 

  • Varma S, Janesko KL, Wisniewski SR, Bayir H, Adelson PD, Thomas NJ, Kochanek PM (2003) F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J Neurotrauma 20:781–786

    Article  PubMed  Google Scholar 

  • Vázquez MD, Sánchez-Rodriguez F, Osuna E, Diaz J, Cox DE, Pérez-Cárceles MD, Martinez P, Luna A, Pounder DJ (1995) Creatine kinase BB and neuron-specific enolase in cerebrospinal fluid in the diagnosis of brain insult. Am J Forensic Med Pathol 16:210–214

    Article  PubMed  Google Scholar 

  • Von Gertten C, Flores Morales A, Holmir S, Mathiesen T, Nordgvist AC (2005) Genomic responses in rat cerebral cortex after traumatic brain injury. BMC Neurosci 6:69–73

    Article  CAS  Google Scholar 

  • Wada K, Chatzipanteli K, Kraydieh S, Busto R, Dietrich WD (1998) Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurg 43:1427–1436

    CAS  Google Scholar 

  • Wei EP, Lamb RG, Kontos HA (1982) Increased phospholipase C activity after experimental brain injury. J Neurosurg 56:695–698

    Article  PubMed  CAS  Google Scholar 

  • Weiner MF, Vega GL, Diaz-Arrastia R, Moore C, Madden C, Hudak A, Lütjohann D (2008) Plasma 24S-hydroxycholesterol and other oxysterols in acute closed head injury. Brain Inj 22:611–615

    Article  PubMed  Google Scholar 

  • Wiesmann M, Steinmeier E, Magerkurth O, Linn J, Gottmann D, Missler U (2010) Outcome prediction in traumatic brain injury: comparison of neurological status, CT findings, and blood levels of S100B and GFAP. Acta Neurol Scand 121:178–185

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition - the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50:2041–2056

    Article  PubMed  Google Scholar 

  • Williams AJ, Wei HH, Dave JR, Tortella FC (2007) Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J Neuroinflammation 4:17–19

    Article  PubMed  CAS  Google Scholar 

  • Wissing D, Nouritzen H, Egeblad M, Poirier GG, Jaattela M (1997) Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc Natl Acad Sci USA 94:5073–5077

    Article  PubMed  CAS  Google Scholar 

  • Xing G, Ren M, Watson WA, O‘Neil JT, Verma A (2009) Traumatic brain injury-induced expression and phosphorylation of pyruvate dehydrogenase: a mechanism of dysregulated glucose metabolism. Neurosci Lett 454:38–42

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Rabchevsky AG, Hall ED (2007) Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 100:639–649

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Wang HD, Feng XM, Ding YS, Jin W, Tang K (2009) The expression of NF-E2-related factor 2 in the rat brain after traumatic brain injury. J Trauma 66:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xue R, Ong WY, Chen P (2009) Roles of cholesterol in vesicle fusion and motion. Biophys J 97:1371–1380

    Google Scholar 

  • Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6:644–651

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2010). Neurochemical Aspects of Traumatic Brain Injury. In: Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6652-0_6

Download citation

Publish with us

Policies and ethics