Skip to main content

Potential Neuroprotective Strategies for Experimental Spinal Cord Injury

  • Chapter
  • First Online:
Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases
  • 664 Accesses

Abstract

Spinal cord injury (SCI) is a complex and devastating clinical condition that produces loss of motor and sensory functions below the injury site, often affecting young and healthy individuals throughout the world (Beattie et al., 2000). Functional recovery is very limited because injured axons within the brain and spinal cord are unable to regenerate spontaneously and therapeutic strategies to reestablish lost neuronal connections in spinal cord injury patients are currently unavailable (Schwab et al., 2006; Fouad and Pearson, 2004; Fouad and Tse, 2008). Several factors, including myelin-associated neurite growth inhibitors3, myelin-associated glycoprotein (MAG), myelin-associated glycoprotein (Nogo), and oligodendrocyte-myelin glycoprotein (OMgp), block the regeneration of injured neurons (McKerracher and Winton, 2002; Watkins and Barres, 2002; Filbin, 2003; Watkins and Barres, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ala T, Romero S, Knight F, Feldt K, Frey WH 2nd (1990) GM-1 treatment of Alzheimer’s disease. A pilot study of safety and efficacy. Arch Neurol 47:1126–1130

    Article  CAS  PubMed  Google Scholar 

  • Anderson DK, Braughler JM, Hall ED, Waters TR, McCall JM, Means ED (1988) Effects of treatment with U-74006F on neurological outcome following experimental spinal cord injury. J Neurosurg 69:562–567

    Article  CAS  PubMed  Google Scholar 

  • Anderson DK, Hall ED, Braughler JM, McCall JM, Means ED (1991) Effect of delayed administration of U74006F (tirilazad mesylate) on recovery of locomotor function after experimental spinal cord injury. J Neurotrauma 8:187–192

    Article  CAS  PubMed  Google Scholar 

  • Anderson DK, Hall ED (1994) Lipid hydrolysis and free radical formation in central nervous system trauma. In: Salzman SK, Faden AI (eds) The neurobiology of central nervous system trauma. Oxford University Press, Oxford, pp 131–138

    Google Scholar 

  • Ao Q, Wang AJ, Chen GO, Wang ST, Zuo HC, Zhang XF (2007) Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Med Hypotheses 69:1234–1237

    Article  CAS  PubMed  Google Scholar 

  • Aslan A, Cemek M, Buyukokuroglu ME, Altunbas K, Bas O, Yurumez Y, Cosar M (2009) Dantrolene can reduce secondary damage after spinal cord injury. Eur Spine J 26 May 2009 [Epub ahead of print]

    Google Scholar 

  • Baptiste DC, Austin JW, Zhao W, Nahirny A, Sugita S, Fehlings MG (2009) Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. J Neuropathol Exp Neurol 18 May 2009 [Epub ahead of print]

    Google Scholar 

  • Bartolomei JC, Greer CA (2000) Olfactory ensheathing cells: bridging the gap in spinal cord injury. Neurosurgery 47:1057–1069

    Article  CAS  PubMed  Google Scholar 

  • Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17:915–925

    Article  CAS  PubMed  Google Scholar 

  • Behrman AL, Bowden MG, Nair PM (2006) Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther 86:1406–1425

    Article  PubMed  Google Scholar 

  • Blesch and Tuszynski (2003) Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. J Comp Neurol 467:403–417

    Article  CAS  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study. N Engl J Med 322:1405–1411

    Article  CAS  PubMed  Google Scholar 

  • Buki A, Farkas O, Doczi T, Povlishock JT (2003) Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury. J Neurotrauma 20:261–268

    Article  CAS  PubMed  Google Scholar 

  • Bunge MB (2008) Novel combination strategies to repair the injured mammalian spinal cord. J Spinal Cord Med 31:262–269

    PubMed  Google Scholar 

  • Carvalho MO, Barros Filho TE, Tebet MA (2008) Effects of methylprednisolone and ganglioside GM-1 on a spinal lesion: a functional analysis. Clinics (Sao Paulo) 63:375–380

    Google Scholar 

  • Ceylan S, Ilbay K, Baykal S, Ceylan S, Sener U, Ozmenoğlu M, Kalelioğlu M, Aktürk F, Komsuoğlu SS, Ozoran A (1992) Treatment of acute spinal cord injuries: comparison of thyrotropin-releasing hormone and nimodipine. Res Exp Med (Berl) 192:23–33

    Article  CAS  Google Scholar 

  • Chang CM, Lee MH, Wang TC, Weng HH, Chung CY, Yang JT (2009) Brain protection by methylprednisolone in rats with spinal cord injury. Neuroreport 20:968–972

    Article  CAS  PubMed  Google Scholar 

  • Chinnock P, Roberts I (2005) Gangliosides for acute spinal cord injury. Cochrane Database Syst Rev 2:CD004444

    PubMed  Google Scholar 

  • Chvatal SA, Kim YT, Bratt-Leal AM, Lee H, Bellamkonda RV (2008) Spatial distribution and acute anti-inflammatory effects of methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials 29:1967–1975

    Article  CAS  PubMed  Google Scholar 

  • Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, Rao JS, Dinh DH (2007) Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 24:391–410

    Article  PubMed  Google Scholar 

  • Dasari VR, Veeravalli KK, Tsung AJ, Gondi CS, Gujrati M, Dinh D, Rao JS (2009) Neuronal apoptosis inhibited by cord blood stem cells after spinal cord injury. J Neurotrauma 26 May 2009 [Epub ahead of print]

    Google Scholar 

  • Ding Y, Kastin AJ, Pan W (2005) Neural plasticity after spinal cord injury. Curr Pharm Des 11:1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Ditor DS, John SM, Roy J, Marx JC, Kittmer C, Weaver LC (2007) Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat. J Neurosci Res 85:1458–1467

    Article  CAS  PubMed  Google Scholar 

  • Domeniconi M, Filbin MT (2005) Overcoming inhibitors in myelin to promote axonal regeneration. J Neurol Sci 233:43–47

    Article  CAS  PubMed  Google Scholar 

  • Eftekharpour E, Karimi-Abdolrezaee S, Fehlings MG (2008) Current status of experimental cell replacement approaches to spinal cord injury. Neurofocus 24:E19

    Google Scholar 

  • Farooqui AA, Yang HC, Horrocks LA (1997) Involvement of phospholipase A2 in neurodegeneration. Neurochem Int 30:517–522

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Litsky ML, Farooqui T, Horrocks LA (1999) Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res Bull 49:139–153

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29:1961–1977

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2006) Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 58:591–620

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in brain. Springer, New York, NY

    Book  Google Scholar 

  • Favaron M, Manev H, Alho H, Bertolino M, Ferret B, Guidotti A, Costa E (1988) Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc Natl Acad Sci USA 85:7351–7355

    Article  CAS  PubMed  Google Scholar 

  • Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA (2006) Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 97:1314–1326

    Article  CAS  PubMed  Google Scholar 

  • Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713

    Article  CAS  PubMed  Google Scholar 

  • Fouad K, Pearson K (2004) Restoring walking after spinal cord injury. Prog Neurobiol 73:107–126

    Article  PubMed  Google Scholar 

  • Fouad K, Tse A (2008) Adaptive changes in the injured spinal cord and their role in promoting functional recovery. Neurol Res 30:17–27

    Article  CAS  PubMed  Google Scholar 

  • Franssen EH, de Bree FM, Verhaagen J (2007) Olfactory ensheathing glia: their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord. Brain Res Rev 56:236–258

    Article  PubMed  Google Scholar 

  • Furukawa S, Furukawa Y (2007) FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord. Brain Nerve 59:1333–1339

    CAS  PubMed  Google Scholar 

  • Garcia-Martinez EM, Sanz-Blasco S, Karachitos A, Bandez MJ, Fernandez-Gomez FJ, Perez-Alvarez S, de Mera RM, Jordan MJ, Aguirre N, Galindo MF, Villalobos C, Navarro A, Kmita H, Jordán J (2010) Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol 79:239–250

    Article  CAS  PubMed  Google Scholar 

  • Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal-cord injury–a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324:1829–1838

    Article  CAS  PubMed  Google Scholar 

  • Geisler FH, Dorsey FC, Coleman WP (1993) Past and current clinical studies with GM-1 ganglioside in acute spinal cord injury. Ann Emerg Med 22:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Geisler FH (1998) Clinical trials of pharmacotherapy for spinal cord injury. Ann NY Acad Sci 845:374–381

    Article  CAS  PubMed  Google Scholar 

  • Hall ED (1988) Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats. J Neurosurg 68:462–465

    Article  CAS  PubMed  Google Scholar 

  • Hall ED, Andrus PK, Smith SL, Oostveen JA, Scherch HM, Lutzke BS, Raub TJ, Sawada GA, Palmer JR, Banitt LS, Tustin JS, Belonga KL, Ayer DE, Bundy GL (1996) Neuroprotective efficacy of microvascularly-localized versus brain-penetrating antioxidants. Acta Neurochir Suppl 66:107–113

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Fukuda N (1991) Effect of thyrotropin-releasing hormone on the neurologic impairment in rats with spinal cord injury: treatment starting 24 h and 7 days after injury. Eur J Pharmacol 203:25–32

    Article  CAS  PubMed  Google Scholar 

  • Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Nurosurg Focus 25:E14

    Article  Google Scholar 

  • Hsu JY, Bourguignon LY, Adams CM, Peyrollier K, Zhang H, Fandel T, Cun CL, Werb Z, Noble-Haeusslein LJ (2008) Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord. J Neurosci 28:13467–13477

    Article  CAS  PubMed  Google Scholar 

  • Hu WH, Qiang WA, Li F, Liu N, Wang GO, Wang HY, Wan XS, Liao WH, Liu JS, Jen MF (2000) Constitutive and inducible nitric oxide synthases after dynorphin-induced spinal cord injury. J Chem Neuroanat 17:183–197

    Article  CAS  PubMed  Google Scholar 

  • Hua XY, Svensson CI, Matsui T, Fitzsimmons B, Yaksh TL, Webb M (2005) Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci 22:2431–2440

    Article  PubMed  Google Scholar 

  • Huang WL, King VR, Dyall SC, Ward RE, Lal N, Priestley JV, Michael-Titus AT (2007) A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 130:3004–3019

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Bhavsar A, Ward RE, Hall JC, Priestley JV, Michael-Titus AT (2009) Arachidonyl trifluoromethyl ketone is neuroprotective after spinal cord injury. J Neurotrauma 16 Apr 2009 [Epub ahead of print]

    Google Scholar 

  • Ikeda O, Murakami M, Ino H, Yamazaki M, Nemoto T, Koda M, Nakayama C, Moriya H (2001) Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol 102:239–245

    CAS  PubMed  Google Scholar 

  • Ito M, Natsume A, Takeuchi H, Shimato S, Ohno M, Wakabayashi T, Yoshida J (2009) Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK Pathway. J Neurotrauma 26:41–53

    Article  PubMed  Google Scholar 

  • Jacob PL, Nash MS (2004) Exercise recommendations for individuals with spinal cord injury. Sport Med 34:727–751

    Article  Google Scholar 

  • Jones LL, Oudega M, Bunge MB, Tuszynski MH (2001) Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol 533:83–89

    Article  CAS  PubMed  Google Scholar 

  • Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182:399–411

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Kong PJ, Kim BS, Sheen DH, Nam SY, Chun W (2004) Inhibitory action of minocycline on lipopolysaccharide-induced release of nitric oxide and prostaglandin E2 in BV2 microglial cells. Arch Pharm Res 27:314–318

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Hwang DH, Lee JE, Kim SU, Kim BG (2007) Stem cell-based cell therapy for spinal cord injury. Cell Transplant 16:355–364

    Article  PubMed  Google Scholar 

  • Kim HM, Hwang DH, Lee JE, Kim SU, Kim BG (2009) Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One 4:e4987

    Article  PubMed  CAS  Google Scholar 

  • Kim YT, Caldwell JM, Bellamkonda RV (2009) Nanoparticle-mediated local delivery of Methylprednisolone after spinal cord injury. Biomaterials 30:2582–2590

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196:168–179

    Article  CAS  PubMed  Google Scholar 

  • King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT (2006) Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci 26:4672–4680

    Article  CAS  PubMed  Google Scholar 

  • Koob AO, Colby JM, Borgens RB (2008) Behavioral recovery from traumatic brain injury after membrane reconstruction using polyethylene glycol. J Biol Eng 2:9

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Hata K, Yamaguchi A, Yamashita T (2008) Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration. Curr Pharm Des 13:2493–2499

    Article  Google Scholar 

  • Kwok JC, Afshari F, Garcia-Alias G, Fawcett JW (2008) Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci 26:131–145

    PubMed  Google Scholar 

  • Kwon BK, Roy J, Lee JH, Okon EB, Zhang H, Marx JC, Kindy MS (2009) Magnesium chloride in a polyethylene glycol formulation as a neuroprotective therapy for acute spinal cord injury: preclinical refinement and optimization. J Neurotrauma 24 Mar 2009 [Epub ahead of print]

    Google Scholar 

  • Lang-Lazdunski L, Biondeau N, Jarretou G, Heurteaux C (2003) Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. J Vasc Surg 38:564–575

    Article  PubMed  Google Scholar 

  • Latorre E, Collado MP, Fernández I, Aragonés MD, Catalán RE (2003) Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur J Biochem 270:36–46

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G (2002) Ganglioside function in calcium homeostasis and signaling. Neurochem Res 27:637–647

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, Oh YJ, Markelonis GJ, Oh TH (2003) Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20:1017–1027

    Article  PubMed  Google Scholar 

  • Lee JM, Yan P, Xiao Q, Chen S, Lee KY, Hsu CH, Xu J (2008) Methylprednisolone protects oligodendrocytes but not neurons after spinal cord injury. J Neurosci 28:3141–3149

    Article  CAS  PubMed  Google Scholar 

  • Lee MY, Chen L, Toborek M (2009) Nicotine attenuates iNOS expression and contributes to neuroprotection in a compressive model of spinal cord injury. J Neurosci Res 87:937–947

    Article  CAS  PubMed  Google Scholar 

  • Leon A, Facci L, Toffano G, Sonnino S, Tettamanti G (1981) Activation of Na+, K+-ATPase by nanomolar concentrations of GM1 ganglioside. J Neurochem 37:350–357

    Article  CAS  PubMed  Google Scholar 

  • Lingor P, Teusch N, Schwarz K, Mueller R, Mack H, Bahr M, Mueller BK (2007) Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo. J Neurochem 103:181–191

    CAS  PubMed  Google Scholar 

  • Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB, Xu XM (2006) A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59:606–619

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang X, Lu CC, Kerman R, Steward O, Xu XM, Zou Y (2008a) Repulsive Wnt signaling inhibits axon regeneration after CNS injury. J Neurosci 28:8376–8382

    Article  CAS  PubMed  Google Scholar 

  • Liu WL, Lee YH, Tsai SY, Hsu CY, Sun YY, Yang LY, Tsai SH, Yang WC (2008b) Methylprednisolone inhibits the expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycans in reactivated astrocytes. Glia 56:1390–1400

    Article  PubMed  Google Scholar 

  • Lu J, Ashwell K (2002) Olfactory ensheathing cells: their potential use for repairing the injured spinal cord. Spine (Phila Pa 1978) 27:887–892

    Article  PubMed  Google Scholar 

  • Lukáčová N, Kolesárová M, Kuchárová K, Pavel J, Kolesár D, Radoňák J, Maršala M, Chalimoniuk M, Langfort J, Maršala J (2005) The effect of a spinal cord hemisection on changes in nitric oxide synthase pools in the site of injury and in regions located far away from the injured site. Cell Mol Neurobiol 26:1365–1383

    Article  CAS  Google Scholar 

  • Lukacova N, Davidova A, Kolesar D, Kolesarova M, Schreiberova A, Lackova M, Krizanova O, Marsala M, Marsala J (2008) The effect of N-nitro-L-arginine and aminoguanidine treatment on changes in constitutive and inducible nitric oxide synthases in the spinal cord after sciatic nerve transection. Int J Mol Med 21:413–421

    CAS  PubMed  Google Scholar 

  • Lynskey JV, Belanger A, Jung R (2008) Activity-dependent plasticity in spinal cord injury. J Rehabil Res Dev 45:229–240

    Article  PubMed  Google Scholar 

  • Machado LS, Kozak A, Erqul A, Hess DC, Borlougan CV, Fagan SC (2006) Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC 7:56

    Google Scholar 

  • Marchand F, Tsantoulas C, Singh D, Grist J, Clark AK, Bradbury EJ, McMahon SB (2009) Effects of Etanercept and Minocycline in a rat model of spinal cord injury. Eur J Pain 13:673–681

    Article  CAS  PubMed  Google Scholar 

  • Marsala J, Orendacova J, Lukacova N, Vanicky I (2007) Traumatic injury of the spinal cord and nitric oxide. Prog Brain Res 161:171–183

    Article  CAS  PubMed  Google Scholar 

  • McKerracher L, Winton MJ (2002) Nogo on the go. Neuron 36:345–348

    Article  CAS  PubMed  Google Scholar 

  • Melero-Fernández de Mera RM, García-Martínez E, Fernández-Gómez FJ, Hernández-Guijo JM, Aguirre N, Galindo MF, Jordán J (2008) Rev. Neurol 47:31–38

    Google Scholar 

  • Michael-Titus AT (2007) Omega-3 fatty acids and neurological injury. Prost Leukot Essent Fatty Acids 77:295–300

    Article  CAS  Google Scholar 

  • Mitcho K, Kanko JR (1999) Acute care management of spinal cord injuries. Crit Care Nurse 22:60–79

    CAS  Google Scholar 

  • Miyashita T, Koda M, Kitajo K, Yamazaki M, Takahashi K, Kikuchi A, Yamashita T (2009) Wnt-Ryk signaling mediates axon growth inhibition and limits functional recovery after spinal cord injury. J Neurotrauma 27 May 2009 [Epub ahead of print]

    Google Scholar 

  • Monga V, Meena CL, Kaur N, Jain R (2008) Chemistry and biology of thyrotropin-releasing hormone (TRH) and its analogs. Curr Med Chem 15:18–33

    Article  Google Scholar 

  • Moriwaki A, Nishida K, Matsushita M, Ozaki T, Kunisada T, Yoshida A, Inoue H, Matsui H (2005) Calpain inhibitors prevent neuronal cell death and ameliorate motor disturbances after compression-induced spinal cord injury in rats. J Neurotrauma 22:398–406

    Article  PubMed  Google Scholar 

  • Murphy M (1999) Traumatic spinal cord injury: an acute care rehabilitation perspective. Crit Care Nurse Q 22:51–59

    CAS  Google Scholar 

  • Noble LJ, Donovan F, Igarashi T, Gousseo S, Werb Z (2002) Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 22:7526–7535

    CAS  PubMed  Google Scholar 

  • Olivas AD, Noble-Haeusslein LJ (2006) Phospholipase A2 and spinal cord injury: a novel target for therapeutic intervention. Ann Neurol 59:577–579

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Kim HY, Jou I, Park SM (2008) GM1 induces p38 and microtubule dependent ramification of rat primary microglia in vitro. Brain Res 1244:13–23

    Article  CAS  PubMed  Google Scholar 

  • Partington CR, Daly JW (1979) Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes. Mol Pharmacol 15:484–491

    CAS  PubMed  Google Scholar 

  • Phillis JW, O’Regan MH (1995) GM1 ganglioside inhibits ischemic release of amino acid neurotransmitters from rat cortex. Neuroreport 6:2010–2012

    Article  CAS  PubMed  Google Scholar 

  • Pizzi MA, Crowe MJ (2007) Matrix metalloproteinases and proteoglycans in axonal regeneration. Exp Neurol 204:496–511

    Article  CAS  PubMed  Google Scholar 

  • Pruzanski W, Greenwald RA, Street IP, Laliberte F, Stefanski E, Vadas P (1992) Inhibition of enzymatic activity of phospholipases A2 by minocycline and doxycycline. Biochem Pharmacol 44:1165–1170

    Article  CAS  PubMed  Google Scholar 

  • Pyo H, Joe E, Tung S, Lee SH, Jou I (1999) Gangliosides activate cultured rat brain microglia. J Biol Chem 274:34584–34589

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar R, Fugaccia I, Scheff SW, Geddes JW, Srinivasan C, Toborek M (2005) Nicotine attenuates morphological deficits in a contusion model of spinal cord injury. J Neurotrauma 22:240–251

    Article  CAS  PubMed  Google Scholar 

  • Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev 42:169–185

    Article  CAS  PubMed  Google Scholar 

  • Riegger T, Conrad S, Liu K, Schluesener HJ, Adibzahdeh M, Schwab JM (2007) Spinal cord injury-induced immune depression syndrome (SCI-IDS). Eur J Neurosci 25:1743–1747

    Article  PubMed  Google Scholar 

  • Riegger T, Conrad S, Schluesener HJ, Kaps HP, Badke A, Baron C, Gerstein J, Dietz K, Abdizahdeh M, Schwab JM (2009) Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience 158:1194–1199

    Article  CAS  PubMed  Google Scholar 

  • Ruff RL, McKerracher L, Selzer ME (2008) Repair and neurorehabilitation strategies for spinal cord injury. Ann NY Acad Sci 1142:1–20

    Article  CAS  PubMed  Google Scholar 

  • Sadowsky CL, McDonald JW (2009) Activity-based restorative therapies: concepts and applications in spinal cord injury-related neurorehabilitation. Dev Disabil Res Rev 15:112–126

    Article  PubMed  Google Scholar 

  • Schmid D, Burmester GR, Tripmacher R, Fici G, von Voigtlander P, Buttgereit F (2001) Short-term effects of the 21-aminosteroid lazaroid tirilazad mesylate (PNU-74006F) and the pyrrolopyrimidine lazaroid PNU-101033E on energy metabolism of human peripheral blood mononuclear cells. Biosci Rep 21:101–110

    Article  CAS  PubMed  Google Scholar 

  • Schröter A, Lustenberger RM, Obermair FJ, Thallmair M (2009) High-dose corticosteroids after spinal cord injury reduce neural progenitor cell proliferation. Neuroscience 161:753–763

    Article  PubMed  CAS  Google Scholar 

  • Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, Schluesener HJ (2006) Experimental strategies to promote spinal cord regeneration––an integrative perspective. Prog Neurobiol 78:91–116

    Article  CAS  PubMed  Google Scholar 

  • Schumacher PA, Siman RG, Fehlings MG (2000) Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurological function, and enhances axonal survival after traumatic spinal cord injury. J Neurochem 74:1646–1655

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Badgaiyan RD, Alm P, Mohanty S, Wiklund L (2005) Neuroprotective effects of nitric oxide synthase inhibitors in spinal cord injury-induced pathophysiology and motor functions: an experimental study in the rat. Ann NY Acad Sci 1053:422–434

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Nyberg F, Gordh T, Alm P (2006) Topical application of dynorphin A (1–17) antibodies attenuates neuronal nitric oxide synthase up-regulation, edema formation, and cell injury following focal trauma to the rat spinal cord. Acta Neurochir Suppl 96:309–315

    Article  CAS  PubMed  Google Scholar 

  • Shioiri Y, Kurimoto A, Ako T, Daikoku S, Ohtake A, Ishida H, Kiso M, Suzuki K, Kanie O (2009) Energy-resolved structural details obtained from gangliosides. Anal Chem 81:139–145

    Article  CAS  PubMed  Google Scholar 

  • Soderquist RG, Milligan ED, Sloane EM, Harrison JA, Douvas KK, Potter JM, Huges TS, Chavez RA, Johnson K, Watkins LR, Mahoney MJ (2008) PEGylation of brain-derived neurotrophic factor for preserved biological activity and enhanced spinal cord distribution. J Biomed Mater Res [Epub ahead of print]

    Google Scholar 

  • Sohn H, Kim YS, Kim HT, Kim CH, Cho EW, Kang HY, Kim NS, Kim CH, Ryu SE, Lee JH, Ko JH (2006) Ganglioside GM3 is involved in neuronal cell death. FASEB J 20:1248–1250

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Wei EQ, Zhang WP, Zhang L, Liu JR, Chen Z (2004) Minocycline protects PC12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation. Neuroreport 15:2181–2184

    Article  CAS  PubMed  Google Scholar 

  • Song XY, Li F, Zhang FH, Zhong JH, Zhou XF (2008 Mar 5) 2008. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS One 3(3):e1707

    Google Scholar 

  • Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190

    Article  CAS  PubMed  Google Scholar 

  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308–322

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm L (1994) Gangliosides––a new therapeutic agent against stroke and Alzheimer’s disease. Life Sci 55:2125–2134

    Article  CAS  PubMed  Google Scholar 

  • Tan AM, Zhao P, Waxman SG, Hains BC (2009) Early microglial inhibition preemptively mitigates chronic pain development after experimental spinal cord injury. J Rehabi Res Dev 46:123–133

    Article  Google Scholar 

  • Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci USA 101:3071–3076

    Article  CAS  PubMed  Google Scholar 

  • Thorell WE, Leibrock LG, Agrawal SK (2002) Role of RyRs and IP3 receptors after traumatic injury to spinal cord white matter. J Neurotrauma 19:335–342

    Article  CAS  PubMed  Google Scholar 

  • Villa RF, Gorini A (1997) Pharmacology of lazaroids and brain energy metabolism: a review. Pharmacol Rev 49:99–136

    CAS  PubMed  Google Scholar 

  • Walker JB, Harris M (1993) GM-1 ganglioside administration combined with physical therapy restores ambulation in humans with chronic spinal cord injury. Neurosci Lett 161:174–178

    Article  CAS  PubMed  Google Scholar 

  • Watkins TA, Barres BA (2002) Nerve regeneration: regrowth stumped by shared receptor. Curr Biol 12:R654–R656

    Article  CAS  PubMed  Google Scholar 

  • Webber DJ, Bradbury EJ, McMohan SB, Minger SL (2007) Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med 2:929–945

    Article  CAS  PubMed  Google Scholar 

  • Wells JE, Rice TK, Nuttall RK, Edwards DR, Zekki H, Rivest S, Yong VW (2002) An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. J Neurosci 23:10107–10115

    Google Scholar 

  • Xu J, Fan G, Chen S, Wu Y, Xu XM, Hsu CY (1998) Methylprednisolone inhibition of TNF-alpha expression and NF-kB activation after spinal cord injury in rats. Brain Res Mol Brain Res 59:135–142

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Kim GM, Ahmed SH, Xu J, Yan P, Xu XM, Hsu CY (2001) Glucocorticoid receptor-mediated suppression of activator protein-1 activation and matrix metalloproteinase expression after spinal cord injury. J Neurosci 21:92–97

    CAS  PubMed  Google Scholar 

  • Xu J, Chen S, Chen H, Xiao Q, Hsu CY, Michael D, Bao J (2009) STAT5 mediates antiapoptotic effects of methylprednisolone on oligodendrocytes. J Neurosci 29:2022–2026

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T (2007) Molecular mechanism and regulation of axon growth inhibition. Brain Nerve 59:1347–1353

    CAS  PubMed  Google Scholar 

  • Yan P, Xu J, Li Q, Chen S, Kim GM, Hsu CY, Xu XM (1999) Glucocorticoid receptor expression in the spinal cord after traumatic injury in adult rats. J Neurosci 19:9355–9363

    CAS  PubMed  Google Scholar 

  • Yang H-C, Farooqui AA, Horrocks LA (1994a) Effects of glycosaminoglycans and glycosphingolipids on cytosolic phospholipases A2 from bovine brain. Biochem J 299:91–95

    CAS  PubMed  Google Scholar 

  • Yang H-C, Farooqui AA, Horrocks LA (1994b) Effects of sialic acid and sialoglycoconjugates on cytosolic phospholipases A2 from bovine brain. Biochem Biophys Res Commun 199:1158–1166

    Article  CAS  PubMed  Google Scholar 

  • Yates AJ, Walters JD, Wood CL, Johnson JD (1989) Ganglioside modulation of cyclic AMP-dependent protein kinase and cyclic nucleotide phosphodiesterase in vitro. J Neurochem 53:162–167

    Article  CAS  PubMed  Google Scholar 

  • Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    Article  CAS  PubMed  Google Scholar 

  • Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2010). Potential Neuroprotective Strategies for Experimental Spinal Cord Injury. In: Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6652-0_5

Download citation

Publish with us

Policies and ethics