Skip to main content
  • 669 Accesses

Abstract

The brain has the highest metabolic rate of all organs and depends predominantly on oxidative metabolism as a source of energy. Thus, it utilizes about 20% of respired oxygen for normal function, even though it represents only 5% of the body weight. Much of oxygen taken up by neurons is utilized for producing ATP, which is needed not only for maintaining the appropriate ionic gradients across the neural membranes but also creating the proper cellular redox potentials. Full and transient deficits in glucose and oxygen can rapidly compromise ATP production and threaten cellular integrity by either not maintaining or abnormally modulating ion homeostasis and cellular redox. The initial response to a transient insufficiency of energy is depolarization resulting in Na+ influx into axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Aoki M, Kawagoe J, Yoshida T, Hattori A, Kogure K, Itoyama Y (1995) Ischemic delayed neuronal death: a mitochondrial hypothesis. Stroke 26:1478–1489

    CAS  PubMed  Google Scholar 

  • Acarin L, Paris J, González B, Castellano B (2002) Glial expression of small heat shock proteins following an excitotoxic lesion in the immature rat brain. Glia 38:1–14

    PubMed  Google Scholar 

  • Akin Sp, Liu PK, Hsu CY (1996) Immediate early gene expression in response to cerebral ischemia: friend or foe? Stroke 27:1682–1687

    Google Scholar 

  • Al-Bahrani A, Taha S, Shaath H, Bakhiet M (2007) TNF-alpha and IL-8 in acute stroke and the modulation of these cytokines by antiplatelet agents. Curr Neurovasc Res 4:31–37

    CAS  PubMed  Google Scholar 

  • Almeida A, Heales SJ, Bolanos JP, Medina JM (1998) Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Res 790:209–216

    CAS  PubMed  Google Scholar 

  • An G, Lin TN, Liu JS, Xue JJ, He YY, Hsu CY (1993) Expression of c-fos and c-jun family genes after focal cerebral ischemia. Ann Neurol 33:457–464

    CAS  PubMed  Google Scholar 

  • An JJ, Lee YP, Kim SY, Lee SH, Lee MJ, Jeong MS, Kim DW, Jang SH, Yoo KY, Won MH, Kang TC, Kwon OS, Cho SW, Lee KS, Park J, Eum WS, Choi SY (2008) Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J 275:1296–1308

    CAS  PubMed  Google Scholar 

  • Annunziato L, Pignataro G, Di Renzo GF (2004) Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev 56:633–654

    CAS  PubMed  Google Scholar 

  • Anrather J, Racchumi G, Iadecola C (2006) NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 281:5657–5667

    CAS  PubMed  Google Scholar 

  • Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S (2000) Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem 275:37159–37166

    CAS  PubMed  Google Scholar 

  • Auger C, Attwell D (2000) Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28:547–558

    CAS  PubMed  Google Scholar 

  • Baltan S (2006) Surviving anoxia: a tale of two white matter tracts. Crit Rev Neurobiol 18:95–103

    CAS  PubMed  Google Scholar 

  • Baltan S (2009) Ischemic injury to white matter: an age-dependent process. Neuroscientist 15:126–133

    CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636

    CAS  PubMed  Google Scholar 

  • Benavides A, Pastor D, Santos P, Traque P, Calvo S (2005) CHOP plays a pivotal role in the astrocyte death induced by oxygen and glucose deprivation. Glia 52:261–275

    PubMed  Google Scholar 

  • Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 48:285–296

    CAS  PubMed  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    CAS  PubMed  Google Scholar 

  • Bojarski C, Meloni BP, Moore SR, Majda BT, Knuckey NW (2008) Na+/Ca2+ exchanger subtype (NCX1, NCX2, NCX3) protein expression in the rat hippocampus following 3 min and 8 min durations of global cerebral ischemia. Brain Res 1189:198–202

    CAS  PubMed  Google Scholar 

  • Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68:2227–2240

    CAS  PubMed  Google Scholar 

  • Brea D, Sobrino T, Ramos-Cabrer P, Castillo J (2009) Inflammatory and neuroimmunomodulatory changes in acute cerebral ischemia. Cerebrovasc Dis 27(Suppl 1):48–64

    CAS  PubMed  Google Scholar 

  • Büttner F, Cordes C, Gerlach F, Heimann A, Alessandri B, Luxemburger U, Türeci O, Hankeln T, Kempski O, Burmester T (2009) Genomic response of the rat brain to global ischemia and reperfusion. Brain Res 1252:1–14

    PubMed  Google Scholar 

  • Camandola S, Poli G, Mattson MP (2000) The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons. J Neurochem 74:159–168

    CAS  PubMed  Google Scholar 

  • Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84:215–222

    CAS  PubMed  Google Scholar 

  • Cao G, Pei W, Lan J, Stetler RA, Luo Y, Nagayama T, Graham SH, Yin XM, Simon RP, Chen J (2001) Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J Neurosci 21:4678–4690

    CAS  PubMed  Google Scholar 

  • Carlezon WA Jr., Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    CAS  PubMed  Google Scholar 

  • Chabot C, Gagné J, Giguère C, Bernard J, Baudry M, Massicotte G (1998) Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8:299–309

    CAS  PubMed  Google Scholar 

  • Chaitanya GV, Babu PP (2008) Multiple apoptogenic proteins are involved in the nuclear translocation of Apoptosis Inducing Factor during transient focal cerebral ischemia in rat. Brain Res 1246:178–190

    CAS  PubMed  Google Scholar 

  • Chen J, Jin K, Chen M, Pei W, Kawaguchi K, Greenberg DA, Simon RP (1997) Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem 69:232–245

    CAS  PubMed  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:628–634

    Google Scholar 

  • Clark JD, Schievella AR, Nalefski EA, Lin L-L (1995) Cytosolic phospholipase A2. J Lipid Mediat Cell Signal 12:83–117

    CAS  PubMed  Google Scholar 

  • Clemens JA, Stephenson DT, Smalstig EB, Roberts EF, Johnstone EM, Sharp JD, Little SP, Kramer RM (1996) Reactive glia express cytosolic phospholipase A2 after transient global forebrain ischemia in the rat. Stroke 27:527–535

    CAS  PubMed  Google Scholar 

  • Cui J, Holmes EH, Liu PK (1999) Oxidative damage to the c-fos gene and reduction of its transcription after focal cerebral ischemia. J Neurochem 73:1164–1174

    CAS  PubMed  Google Scholar 

  • Cui J, Holmes EH, Greene TG, Liu PK (2000) Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain. FASEB J 14:955–967

    CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM (2004) Deadly conversations: nuclear-mitochondrial cross-talk. J Bioenerg Biomembr 36:287–294

    CAS  PubMed  Google Scholar 

  • DeCoster MA, Mukherjee PK, Davis RJ, Bazan NG (1998) Platelet-activating factor is a downstream messenger of kainate-induced activation of mitogen-activated protein kinases in primary hippocampal neurons. J Neurosci Res 53:297–303

    CAS  PubMed  Google Scholar 

  • DeGracia DJ, Kumar R, Owen CR, Krause GS, White BC (2002) Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab 22:127–141

    CAS  PubMed  Google Scholar 

  • DeGracia DJ, Montee HL (2004) Cerebral ischemia and the unfolded protein response. J Neurochem 91:1–8

    CAS  PubMed  Google Scholar 

  • DeGracia DJ (2004) Acute and persistent protein synthesis inhibition following cerebral reperfusion. J Neurosci Res 77:771–776

    CAS  PubMed  Google Scholar 

  • Demple B, Sung JS (2005) Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair (Amst) 4:1442–1449

    CAS  Google Scholar 

  • Dienel GA (1984) Regional accumulation of calcium in postischemic rat brain. J Neurochem 43:913–925

    CAS  PubMed  Google Scholar 

  • Edgar AD, Strosznajder J, Horrocks LA (1982) Activation of ethanolamine phospholipase A2 in brain during ischemia. J Neurochem 39:1111–1116

    CAS  PubMed  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature (London) 391:43–50

    CAS  Google Scholar 

  • Epe B, Ballmaier D, Roussyn I, Briviba K, Sies H (1996) DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res 24:4105–4110

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA (1994) Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int Rev Neurobiol 36:267–323

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in brain. Springer, New York, NY

    Google Scholar 

  • Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA (2009) Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N, Ray SK (eds) Brain and spinal cord trauma, Handbook of neurochemistry Lajtha, A. Springer, New York, NY, pp 71–89

    Google Scholar 

  • Farooqui AA (2009) Hot topics in neural membrane lipidology. Springer, New York, NY

    Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York, NY

    Google Scholar 

  • Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53

    PubMed  Google Scholar 

  • Formisano L, Saggese M, Secondo A, Sirabella R, Vito P, Valsecchi V, Molinaro P, Di Renzo G, Annunziato L (2008) The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol Pharmacol 73(3):727–737 13 Dec 2007 [Epub ahead of print]

    CAS  PubMed  Google Scholar 

  • Fradejas N, Pastor MD, Mora-Lee S, Tranque P, Calvo S (2008) SEPS1 gene is activated during astrocyte ischemia and shows prominent antiapoptotic effects. J Mol Neurosci 35:259–265

    CAS  PubMed  Google Scholar 

  • Frangogiannis NG (2007) Chemokines in ischemia and reperfusion. Thromb Haemost 97:738–747

    CAS  PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    CAS  PubMed  Google Scholar 

  • Giffard RG, Yenari MA (2004) Many mechanisms for Hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 16:53–61

    PubMed  Google Scholar 

  • Greenberg DA, Jin K, Khan AA (2008) Neuroglobin: an endogenous neuroprotectant. Curr Opin Pharmacol 8:20–24

    CAS  PubMed  Google Scholar 

  • Hamrick SE, McQuillen PS, Jiang X, Mu D, Madan A, Ferriero DM (2005) A role for hypoxia-inducible factor-1alpha in desferoxamine neuroprotection. Neurosci Lett 379:96–100

    CAS  PubMed  Google Scholar 

  • Hanawalt PC (1994) Transcription-coupled repair and human disease. Science 266:1957–1958

    CAS  PubMed  Google Scholar 

  • Hayashi T, Abe K (2004) Ischemic neuronal cell death and organelle damage. Neurol Res 26:827–834

    CAS  PubMed  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 Is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787

    CAS  PubMed  Google Scholar 

  • Hinman JD, Peters A, Cabral H, Rosene DL, Hollander W, Rasband MN, Abraham CR (2006) Age-related molecular reorganization at the node of Ranvier. J Comp Neurol 495:351–362

    CAS  PubMed  Google Scholar 

  • Ho MC, Lo AC, Kurihara H, Yu AC, Chung SS, Chung SK (2001) Endothelin-1 protects astrocytes from hypoxic/ischemic injury. FASEB J 15:618–626

    CAS  PubMed  Google Scholar 

  • Honda Z, Ishii S, Shimizu T (2002) Platelet-activating factor receptor. J Biochem 131:773–779

    CAS  PubMed  Google Scholar 

  • Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148

    CAS  PubMed  Google Scholar 

  • Huang D, Shenoy A, Cui JK, Huang W, Liu PK (2000) In situ detection of AP sites and DNA strand breaks with 3′-phosphate ends in ischemic mouse brain. FASEB J 14:407–417

    CAS  PubMed  Google Scholar 

  • Ishii S, Nagase T, Shimizu T (2002) Platelet-activating factor receptor. Prostaglandins Other Lipid Mediat 68–69:599–609

    PubMed  Google Scholar 

  • Janaky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y, Shaw CA (1999) Glutathione and signal transduction in the mammalian CNS. J Neurochem 73:889–902

    CAS  PubMed  Google Scholar 

  • Ji L, Nazarali AJ, Paterson PG (2008) Protein-energy malnutrition increases activation of the transcription factor, nuclear factor-κB, in the gerbil hippocampus following global ischemia. J Nutr Biochem 19:770–777

    CAS  PubMed  Google Scholar 

  • Jian Liu K, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Rad Biol Med 39:71–80

    CAS  PubMed  Google Scholar 

  • Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP, Greenberg DA (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50:93–103

    CAS  PubMed  Google Scholar 

  • Kamath-Loeb AS, Hizi A, Tabone J, Solomon MS, Loeb LA (1997) Inefficient repair of RNA × DNA hybrids. Eur J Biochem 250:492–501

    CAS  PubMed  Google Scholar 

  • Kamii H, Mikawa S, Murakami K, Kinouchi H, Yoshimoto T, Reola L, Carlson E, Epstein CJ, Chan PH (1996) Effects of nitric oxide synthase inhibition on brain infraction in SOD-1-transgenic mice following transient focal cerebral ischemia. J Cereb Blood Flow Metab 16:1153–1157

    CAS  PubMed  Google Scholar 

  • Kato H, Araki T, Itoyama Y, Kogure K, Kato K (1995a) An immunohistochemical study of heat shock protein-27 in the hippocampus in a gerbil model of cerebral ischemia and ischemic tolerance. Neurosci 68:65–71

    CAS  Google Scholar 

  • Kato H, Kogure K, Liu XH, Araki T, Kato K, Itoyama Y (1995b) Immunohistochemical localization of the low molecular weight stress protein Hsp27 following focal cerebral ischemia in the rat. Brain Res 679:1–7

    CAS  PubMed  Google Scholar 

  • Khan AA, Mao XO, Banwait S, DerMardirossian CM, Bokoch GM, Jin K, Greenberg DA (2006) Regulation of hypoxic neuronal death signaling by neuroglobin. FASEB J 22:1737–1747

    Google Scholar 

  • Kiessling M, Stumm G, Xie Y, Herdegen T, Aguzzi A, Bravo R, Gass P (1993) Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metab 13:914–924

    CAS  PubMed  Google Scholar 

  • Kim JS (1996) Cytokines and adhesion molecules in stroke and related diseases. J Neurol Sci 137:69–78

    CAS  PubMed  Google Scholar 

  • Koistinaho J, Hökfelt T (1997) Altered gene expression in brain ischemia. Neuroreport 8:i–viii

    CAS  PubMed  Google Scholar 

  • Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y, Kitagawa K, Imuta N, Kinoshita T, Stern DM, Yanagi H, Kamada T (1996) Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. J Biol Chem 271:5025–5032

    CAS  PubMed  Google Scholar 

  • Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ (2004) cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol 56:611–623

    CAS  PubMed  Google Scholar 

  • Li X, Nemoto M, Xu Z, Yu SW, Shimoji M, Andrabi SA, Haince JF, Poirier GG, Dawson TM, Dawson VL, Koehler RC (2007) Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus. Neurosci 144:56–65

    CAS  Google Scholar 

  • Lilienbaum A, Israel A (2003) From calcium to NF-kappa B signaling pathways in neurons. Mol Cell Biol 23:2680–2698

    CAS  PubMed  Google Scholar 

  • Lin L, Cao S, Yu L, Cui J, Hamilton WJ, Liu PK (2000) Up-regulation of base excision repair activity for 8–2′ deoxyhydroxyl guanosine in the mouse brain after forebrain ischemia-reperfusion. J Neurochem 74:101–108

    Google Scholar 

  • Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949

    CAS  PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  PubMed  Google Scholar 

  • Lipton SA, Gu Z, Nakamura T (2007) Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int Rev Neurobiol 82:1–27

    CAS  PubMed  Google Scholar 

  • Lipton SA (2007) Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets 8:621–632

    CAS  PubMed  Google Scholar 

  • Liu PK, Hsu CY, Dizdaroglu M, Floyd RA, Kow YW, Karakaya A, Rabow LE, Cui JK (1996) Damage, repair and mutagenesis in nuclear genes after mouse forebrain ischemia-reperfusion. J Neurosci 16:6795–6806

    CAS  PubMed  Google Scholar 

  • Liu XS, Zou H, Slaughter C, Wang XD (1997) DFF: a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    CAS  PubMed  Google Scholar 

  • Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131

    CAS  PubMed  Google Scholar 

  • Lu A, Tang Y, Ran R, Clark JF, Aronow BJ, Sharp FR (2003) Genomics of the periinfarction cortex after focal cerebral ischemia. J Cereb Blood Flow Metab 23:786–810

    CAS  PubMed  Google Scholar 

  • Luo Y, Ji X, Ling F, Li W, Zhang F, Cao G, Chen J (2007) Impaired DNA repair via the base-excision repair pathway after focal ischemic brain injury: a protein phosphorylation-dependent mechanism reversed by hypothermic neuroprotection. Front Biosci 12:1852–1862

    CAS  PubMed  Google Scholar 

  • Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28:51–65

    CAS  PubMed  Google Scholar 

  • Maclennan KM, Smith PF, Darlington CL (1996) Platelet-activating factor in the CNS. Prog Neurobiol 50:585–596

    CAS  PubMed  Google Scholar 

  • Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL (2004) Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem 279:32869–32881

    CAS  Google Scholar 

  • Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP (1997) A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J Neurochem 68:255–264

    CAS  PubMed  Google Scholar 

  • Mattson MP, Meffert MK (2006) Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 13:852–860

    CAS  PubMed  Google Scholar 

  • Matute C, Domercq M, Sánchez-Gómez MV (2006) Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53:212–224

    PubMed  Google Scholar 

  • Miao B, Yin XH, Pei DS, Zhang QG, Zhang GY (2005) Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation. J Biol Chem 280:21693–21699

    CAS  PubMed  Google Scholar 

  • Millán M, Arenillas J (2006) Gene expression in cerebral ischemia: a new approach for neuroprotection. Cerebrovasc Dis 21(Suppl 2):30–37

    Google Scholar 

  • Minami M, Satoh M (2000) Chemokines as mediators for intercellular communication in the brain. Nippon Yakurigaku Zasshi 115:193–200

    CAS  PubMed  Google Scholar 

  • Minami M, Satoh M (2003) Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci 74:321–327

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, DeCoster MA, Campbell FZ, Davis RJ, Bazan NG (1999) Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J Biol Chem 274:6493–6498

    CAS  PubMed  Google Scholar 

  • Niimura M, Takagi N, Takagi K, Mizutani R, Ishihara N, Matsumoto K, Funakoshi H, Nakamura T, Takeo S (2006) Prevention of apoptosis-inducing factor translocation is a possible mechanism for protective effects of hepatocyte growth factor against neuronal cell death in the hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metab 26:1354–1365

    CAS  PubMed  Google Scholar 

  • Nishino K, Nowak TS Jr (2004) Time course and cellular distribution of hsp27 and hsp72 stress protein expression in a quantitative gerbil model of ischemic injury and tolerance: thresholds for hsp72 induction and hilar lesioning in the context of ischemic preconditioning. J Cereb Blood Flow Metab 24:167–178

    CAS  PubMed  Google Scholar 

  • Nito C, Kamada H, Endo H, Niizuma K, Myer DJ, Chan PH (2008) Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood-brain barrier disruption after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 28:1686–1696

    CAS  PubMed  Google Scholar 

  • Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 13:1441–1453

    CAS  PubMed  Google Scholar 

  • Olney JW, Fuller T, de Gubareff T (1979) Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res 176:91–100

    CAS  PubMed  Google Scholar 

  • Park EM, Cho S, Frys K, Racchumi G, Zhou P, Anrather J, Iadecola C (2004) Interaction between inducible nitric oxide synthase and poly(ADP-ribose) polymerase in focal ischemic brain injury. Stroke 35:2896–2901

    CAS  PubMed  Google Scholar 

  • Parker MA, Bazan HEP, Marcheselli V, Rodriguez de Turco EB, Bazan NG (2002) Platelet-activating factor induces permeability transition and cytochrome c release in isolated brain mitochondria. J Neurosci Res 69:39–50

    CAS  PubMed  Google Scholar 

  • Perez-Pinzon MA, Dave KR, Raval AP (2005) Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid Redox Signal 7:1150–1157

    CAS  PubMed  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    CAS  PubMed  Google Scholar 

  • Pignataro G, Gala R, Cuomo O, Tortiglione A, Giaccio L, Castaldo P, Sirabella R, Matrone C, Canitano A, Amoroso S, Di Renzo G, Annunziato L (2004) Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35:2566–2570

    CAS  PubMed  Google Scholar 

  • Pilitsis JG, Diaz FG, O‘Regan MH, Phillis JW (2001) Inhibition of Na+/Ca2+ exchange by KB-R7943, a novel selective antagonist, attenuates phosphoethanolamine and free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury. Brain Res 916:192–198

    CAS  PubMed  Google Scholar 

  • Pizzi M, Sarnico I, Lanzillotta A, Battistin L, Spano P (2009) Post-ischemic brain damage: NF-kappaB dimer heterogeneity as a molecular determinant of neuron vulnerability. FASEB J 276:27–35

    CAS  Google Scholar 

  • Popa-Wagner A, Carmichael ST, Kokaja Z, Kessler C, Walker LC (2007) The response of the aged brain to stroke: too much, too soon? Curr Neurovas Res 4:216–227

    CAS  Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–L722

    CAS  PubMed  Google Scholar 

  • Qi W, Reiter RJ, Tan DX, Manchester LC, Siu AW, Garcia JJ (2000) Increased levels of oxidatively damaged DNA induced by chromium(III) and H2O2: protection by melatonin and related molecules. J Pineal Res 29:54–61

    CAS  PubMed  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    CAS  PubMed  Google Scholar 

  • Ran A, Lu A, Xu H, Tang Y, Sharp FR (2007) Heat-shock protein regulation of protein folding, protein degradation, protein function, and apoptosis. In Handbook of neurochemistry and molecular biology. Springer, New York, NY, pp 89–107

    Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

    CAS  PubMed  Google Scholar 

  • Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B et al (2007) Heart disease and stroke statistics – 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171

    PubMed  Google Scholar 

  • Rothwell NJ, Relton JK (1993) Involvement of cytokines in acute neurodegeneration in the CNS. Neurosci Biobehav Rev 17:217–227

    CAS  PubMed  Google Scholar 

  • Salaycik KJ, Kelly-Hayes M, Beiser A, Nguyen AH, Brady SM, Kase CS, Wolf PA (2007) Depressive symptoms and risk of stroke: the Framingham Study. Stroke 38:16–21

    Google Scholar 

  • Sarnico I, Lanzillotta A, Boroni F, Benarese M, Alghisi M, Schwaninger M, Inta I, Battistin L, Spano P, Pizzi M (2009) NF-kappaB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem 108:475–485

    CAS  PubMed  Google Scholar 

  • Savitz SI, Malhotra S, Gupta G, Rosenbaum DM (2003) Cell transplants offer promise for stroke recovery. J Cardiovasc Nurs 18:57–61

    PubMed  Google Scholar 

  • Savitz SI, Dinsmore JH, Wechsler LR, Rosenbaum DM, Caplan LR (2004) Cell therapy for stroke. NeuroRx 1:406–414

    PubMed  Google Scholar 

  • Sawe N, Steinberg G, Zhao H (2008) Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 86:1659–1669

    CAS  PubMed  Google Scholar 

  • Sirabella R, Secondo A, Pannaccione A, Scorziello A, Valsecchi V, Adornetto A, Bilo L, Di Renzo G, Annunziato L (2009) Anoxia-induced NF-kappaB-dependent upregulation of NCX1 contributes to Ca2+ refilling into endoplasmic reticulum in cortical neurons. Stroke 40(3):922–929 22 Jan 2009 [Epub ahead of print]

    CAS  PubMed  Google Scholar 

  • Skaper SD (2003a) Poly(ADP-Ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection. Ann NY Acad Sci 993:217–228

    CAS  PubMed  Google Scholar 

  • Skaper SD (2003b) Poly(ADP-ribosyl)ation enzyme-1 as a target for neuroprotection in acute central nervous system injury. Curr Drug Targets CNS Neurol Disord 2:279–291

    CAS  PubMed  Google Scholar 

  • Sobol RW, Horton JK, Kuhn R, Gu H, Singhal RK, Prasad R, Rajewsky K, Wilson SH (1996) Requirement of mammalian DNA polymerase-β in base-excision repair. Nature (London) 379:183–186

    CAS  Google Scholar 

  • Stephenson D, Yin T, Smalstig EB, Hsu MA, Panetta J, Little S, Clemens J (2000) Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia. J Cereb Blood Flow Metab 20:592–603

    CAS  PubMed  Google Scholar 

  • Stetler RA, Cao G, Gao Y, Zhang F, Wang S, Weng Z, Vosler P, Zhang L, Signore A, Graham SH, Chen J (2008) Hsp27 protects against ischemic brain injury via attenuation of a novel stress-response cascade upstream of mitochondrial cell death signaling. J Neurosci 28:13038–13055

    CAS  PubMed  Google Scholar 

  • Sun GY, Horrocks LA, Farooqui AA (2007) The role of NADPH oxidase and phospholipases A2 in mediating oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16

    CAS  PubMed  Google Scholar 

  • Terao Y, Ohta H, Oda A, Nakagaito Y, Kiyota Y, Shintani Y (2009) Macrophage inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neurosci Res 64:75–82

    CAS  PubMed  Google Scholar 

  • Truettner JS, Hu K, Liu CL, Dietrich WD, Hu B (2009) Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats. Brain Res 1249:9–18

    CAS  PubMed  Google Scholar 

  • Tuttolomondo A, Di Raimondo D, di Sciacca R, Pinto A, Licata G (2008) Inflammatory cytokines in acute ischemic stroke. CurrPharm Des 14:3574–3589

    CAS  Google Scholar 

  • van Wijk SJ, Haegeman GJ (2005) Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Rad Biol Med 39:81–90

    PubMed  Google Scholar 

  • Walton M, Sirimanne E, Williams C, Gluckman P, Dragunow M (1996) The role of the cyclic AMP-responsive element binding protein (CREB) in hypoxic-ischemic brain damage and repair. Brain Res Mol Brain Res 43:21–29

    CAS  PubMed  Google Scholar 

  • Wen YD, Zhang HL, Oin ZH (2006) Inflammatory mechanism in ischemic neuronal injury. Neurosci Bull 22:171–182

    CAS  PubMed  Google Scholar 

  • Widlak P (2000) The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochem Pol 47:1037–1044

    CAS  Google Scholar 

  • Wissing D, Mouritzen H, Egeblad M, Poirier GG, Jäättelä M (1997) Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc Natl Acad Sci USA 94:5073–5077

    CAS  PubMed  Google Scholar 

  • Won MH, Kang TC, Jeon GS, Lee JC, Kim DY, Choi EM, Lee KH, Choi CD, Chung MH, Cho SS (1999) Immunohistochemical detection of oxidative DNA damage induced by ischemia-reperfusion insults in gerbil hippocampus in vivo. Brain Res 836:70–78

    CAS  PubMed  Google Scholar 

  • Wong CH, Crack PJ (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem 15:1–14

    CAS  PubMed  Google Scholar 

  • Woo EJ, Kim YG, Kim MS, Han WD, Shin S, Robinson H, Park SY, Oh BH (2004) Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol Cell 14:531–539

    CAS  PubMed  Google Scholar 

  • Yagita Y, Sakoda S, Kitagawa K (2008) Gene expression in brain ischemia. Brain Nerve 60:1347–1355

    CAS  PubMed  Google Scholar 

  • Yakubov E, Gottlieb M, Gil S, Dinerman P, Fuchs P, Yavin E (2004) Overexpression of genes in the CA1 hippocampus region of adult rat following episodes of global ischemia. Mol Brain Res 127:10–25

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Gaynor RB (2004) I-κB kinases: key regulators of the NF-κB pathway. Trends Biochem Sci 29:72–79

    CAS  PubMed  Google Scholar 

  • Yenari MA, Han HS (2006) Influence of hypothermia on post-ischemic inflammation: role of nuclear factor kappa B (NFkappaB). Neurochem Int 49:164–169

    CAS  PubMed  Google Scholar 

  • Yilmaz G, Granger DN (2008) Cell adhesion molecules and ischemic stroke. Neurol Res 30:783–793

    PubMed  Google Scholar 

  • Yoshida T, Limmroth V, Irikura K, Moskowitz MA (1994) The NOS inhibitor, 7-nitroindazole, decreases focal infract volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 14:924–929

    CAS  PubMed  Google Scholar 

  • Zaleska MM, Wilson DF (1989) Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J Neurochem 52:255–260

    CAS  PubMed  Google Scholar 

  • Zaman K, Ryu H, Hall D, O‘Donovan K, Lin KI, Miller MP, Marquis JC, Baraban JM, Semenza GL, Ratan RR (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci 19:9821–9830

    CAS  PubMed  Google Scholar 

  • Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M (2005) Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab 25:30–40

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2010). Neurochemical Aspects of Ischemic Injury. In: Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6652-0_2

Download citation

Publish with us

Policies and ethics