Skip to main content

Echinocandins

  • Chapter
  • First Online:
Book cover Essentials of Clinical Mycology

Abstract

Ever since the discovery that penicillin inhibits bacterial cell wall synthesis, developing equivalent agents to target the fungal cell wall has been a focus of antifungal drug development. Because the cell wall is essential to the vitality of fungal organisms and because its components are absent in the mammalian host, the fungal cell wall represents an ideal target for antifungal compounds. With considerable variation among different species, the gross macromolecular components of the cell wall of most fungi include chitin, alpha- or beta-linked glucans, and a variety of mannoproteins. The dynamics of the fungal cell wall are closely coordinated with cell growth and cell division, and the predominant function of the cell wall is to control the internal turgor of the cell. Disruption of the cell wall structure leads to osmotic instability and may ultimately result in the lysis of the fungal cell. The echinocandins are antifungal agents whose actions are directed against the major constituents of the fungal cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hector RF. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev. 1993;6:1–21.

    CAS  PubMed  Google Scholar 

  2. Debono M, Gordee RS. Antibiotics that inhibit fungal cell wall development. Ann Rev Microbiol. 1994;48:471–97.

    CAS  Google Scholar 

  3. Groll AH, Piscitelli SC, Walsh TJ. Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol. 1998;44:343–500.

    CAS  PubMed  Google Scholar 

  4. Damle BD, Dowell JA, Walsky RL, Weber GL, Stogniew M, Inskeep PB. In vitro and in vivo studies to characterize the clearance mechanism and potential cytochrome P450 interactions of anidulafungin. Antimicrob Agents Chemother. 2009;53:1149–56.

    CAS  PubMed  Google Scholar 

  5. Damle B, Stogniew M, Dowell J. Pharmacokinetics and tissue distribution of anidulafungin in rats. Antimicrob Agents Chemother. 2008;52:2673–6.

    CAS  PubMed  Google Scholar 

  6. Hajdu R, Thompson R, Sundelof JG, et al. Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991 (L-743, 872). Antimicrob Agents Chemother. 1997;41:2339–44.

    CAS  PubMed  Google Scholar 

  7. Stone JA, Xu X, Winchell GA, et al. Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma. Antimicrob Agents Chemother. 2004;48:815–23.

    CAS  PubMed  Google Scholar 

  8. Walsh TJ, Adamson PC, Seibel NL, et al. Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother. 2005;49:4536–45.

    CAS  PubMed  Google Scholar 

  9. Niwa T, Yokota Y, Tokunaga A, et al. Tissue distribution after intravenous dosing of micafungin, an antifungal drug, to rats. Biol Pharm Bull. 2004;27:1154–6.

    CAS  PubMed  Google Scholar 

  10. Hebert MF, Townsend RW, Austin S, et al. Concomitant cyclosporine and micafungin pharmacokinetics in healthy volunteers. J Clin Pharmacol. 2005;45:954–60.

    CAS  PubMed  Google Scholar 

  11. Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol. 1997;35:79–86.

    CAS  PubMed  Google Scholar 

  12. Leventakos K, Ben Ami R, Lewis RE, Kontoyiannis DP. Immunomodulating effects of antifungal therapy. Curr Fungal Infect Rep. 2009;3:43–50.

    Google Scholar 

  13. Bartizal K, Gill CJ, Abruzzo GK, et al. In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743, 872). Antimicrob Agents Chemother. 1997;41:2326–32.

    CAS  PubMed  Google Scholar 

  14. Watabe E, Nakai T, Matsumoto S, Ikeda F, Hatano K. Killing activity of micafungin against Aspergillus fumigatus hyphae assessed by specific fluorescent staining for cell viability. Antimicrob Agents Chemother. 2003;47:1995–8.

    CAS  PubMed  Google Scholar 

  15. Kurtz MB, Heath IB, Marrinan J, Dreikorn S, Onishi J, Douglas CM. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1, 3)-beta-D-glucan synthase. Antimicrob Agents Chemother. 1994;38:1480–9.

    CAS  PubMed  Google Scholar 

  16. Oakley KL, Moore CB, Denning DW. In vitro activity of the echinocandin antifungal agent LY303, 366 in comparison with itraconazole and amphotericin B against Aspergillus spp. Antimicrob Agents Chemother. 1998;42:2726–30.

    CAS  PubMed  Google Scholar 

  17. Bowman JC, Hicks PS, Kurtz MB, et al. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother. 2002;46:3001–12.

    CAS  PubMed  Google Scholar 

  18. Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol. 2008;46:150–6.

    CAS  PubMed  Google Scholar 

  19. Espinel-Ingroff A. Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743, 872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol. 1998;36:2950–6.

    CAS  PubMed  Google Scholar 

  20. Tawara S, Ikeda F, Maki K, et al. In vitro activities of a new lipopeptide antifungal agent, FK463, against a variety of clinically important fungi. Antimicrob Agents Chemother. 2000;44:57–62.

    CAS  PubMed  Google Scholar 

  21. Groll AH, Walsh J. Caspofungin: Pharmacology, safety, and therapeutic potential in superficial and invasive fungal infections. Exp Opin Invest Drugs. 2001;10:1545–58.

    CAS  Google Scholar 

  22. Groll AH, Stergiopoulou T, Roilides E, Walsh TJ. Micafungin: pharmacology, experimental therapeutics and clinical applications. Expert Opin Invest Drugs. 2005;14:489–509.

    CAS  Google Scholar 

  23. Vazquez JA, Sobel JD. Anidulafungin: a novel echinocandin. Clin Infect Dis. 2006;43:215–22.

    PubMed  Google Scholar 

  24. Wiederhold NP, Lewis JS. The echinocandin micafungin: a review of the pharmacology, spectrum of activity, clinical efficacy and safety. Expert Opin Pharmacother. 2007;8:1155–66.

    CAS  PubMed  Google Scholar 

  25. Hope WW, Shoham S, Walsh TJ. The pharmacology and clinical use of caspofungin. Expert Opin Drug Metab Toxicol. 2007;3:263–74.

    CAS  PubMed  Google Scholar 

  26. Estes KE, Penzak SR, Calis KA, Walsh TJ. Pharmacology and antifungal properties of anidulafungin, a new echinocandin. Pharmacotherapy. 2009;29:17–30.

    CAS  PubMed  Google Scholar 

  27. Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of clinical isolates of Aspergillus spp. to anidulafungin, caspofungin, and micafungin: A head-to-head comparison using the CLSI M38-A2 broth microdilution method. J Clin Microbiol. 2009;47:3323–5.

    CAS  PubMed  Google Scholar 

  28. Eschertzhuber S, Velik-Salchner C, Hoermann C, Hoefer D, Lass-Florl C. Caspofungin-resistant Aspergillus flavus after heart transplantation and mechanical circulatory support: a case report. Transplant Infect Dis. 2008;10:190–2.

    CAS  Google Scholar 

  29. Hernandez S, Lopez-Ribot JL, Najvar LK, McCarthy DI, Bocanegra R, Graybill JR. Caspofungin resistance in Candida albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic isolates serially obtained from a patient with progressive Candida esophagitis. Antimicrob Agents Chemother. 2004;48:1382–3.

    CAS  PubMed  Google Scholar 

  30. Moudgal V, Little T, Boikov D, Vazquez JA. Multiechinocandin- and multiazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob Agents Chemother. 2005;49:767–9.

    CAS  PubMed  Google Scholar 

  31. Laverdière M, Lalonde RG, Baril JG, Sheppard DC, Park S, Perlin DS. Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis. J Antimicrob Chemother. 2006;57:705–8.

    PubMed  Google Scholar 

  32. Krogh-Madsen M, Arendrup MC, Heslet L, Knudsen JD. Amphotericin B and caspofungin resistance in Candida glabrata isolates recovered from a critically ill patient. Clin Infect Dis. 2006;42:938–44.

    CAS  PubMed  Google Scholar 

  33. Thompson 3rd GR, Wiederhold NP, Vallor AC, Villareal NC, Lewis JS, Patterson TF. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother. 2008;52:3783–5.

    CAS  PubMed  Google Scholar 

  34. Garcia-Effron G, Kontoyiannis DP, Lewis RE, Perlin DS. Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies. Antimicrob Agents Chemother. 2008;52:4181–3.

    CAS  PubMed  Google Scholar 

  35. Cleary JD, Garcia-Effron G, Chapman SW, Perlin DS. Reduced Candida glabrata susceptibility secondary to an FKS1 mutation developed during candidemia treatment. Antimicrob Agents Chemother. 2008;52:2263–5.

    CAS  PubMed  Google Scholar 

  36. Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Update. 2007;10:121–30.

    CAS  Google Scholar 

  37. Espinel-Ingroff A. Mechanisms of resistance to antifungal agents: Yeasts and filamentous fungi. Rev Iberoam Micol. 2008;25:101–6.

    PubMed  Google Scholar 

  38. Gardiner RE, Souteropoulos P, Park S, Perlin DS. Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Med Mycol. 2005;43 Suppl 1:S299–305.

    CAS  PubMed  Google Scholar 

  39. Park S, Kelly R, Kahn JN, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida spp. isolates. Antimicrob Agents Chemother. 2005;49:3264–73.

    CAS  PubMed  Google Scholar 

  40. Rocha EM, Garcia-Effron G, Park S, Perlin DS. A Ser678Pro substitution in FKS1P confers resistance to echinocandin drugs in Aspergillus fumigatus. Antimicrob Agents Chemother. 2007;51:4174–6.

    CAS  PubMed  Google Scholar 

  41. Garcia-Effron G, Katiyar SK, Park S, Edlind TD, Perlin DS. A naturally occurring proline-to-alanine amino acid change in FKS1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2008;52:2305–12.

    CAS  PubMed  Google Scholar 

  42. Katiyar SK, Edlind TD. Role for FKS1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 2009;53:1772–8.

    CAS  PubMed  Google Scholar 

  43. Maligie MA, Selitrennikoff CP. Cryptococcus neoformans resistance to echinocandins: (1, 3)beta-glucan synthase activity is sensitive to echinocandins. Antimicrob Agents Chemother. 2005;49:2851–6.

    CAS  PubMed  Google Scholar 

  44. Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE. Attenuation of the activity of caspofungin at high concentrations against Candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother. 2005;49:5146–8.

    CAS  PubMed  Google Scholar 

  45. Wiederhold NP. Paradoxical echinocandin activity: a limited in vitro phenomenon? Med Mycol. 2009;47 Suppl 1:S369–75.

    CAS  PubMed  Google Scholar 

  46. Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother. 2004;48:3407–11.

    CAS  PubMed  Google Scholar 

  47. Stevens DA, White TC, Perlin DS, Selitrennikoff CP. Studies of the paradoxical effect of caspofungin at high drug concentrations. Diagn Microbiol Infect Dis. 2005;51:173–8.

    CAS  PubMed  Google Scholar 

  48. Paderu P, Park S, Perlin DS. Caspofungin uptake is mediated by a high-affinity transporter in Candida albicans. Antimicrob Agents Chemother. 2004;48:3845–9.

    CAS  PubMed  Google Scholar 

  49. Schuetzer-Muehlbauer M, Willinger B, Krapf G, Enzinger S, Presterl E, Kuchler K. The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Mol Microbiol. 2003;48:225–35.

    CAS  PubMed  Google Scholar 

  50. Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, et al. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother. 2005;49:2226–36.

    CAS  PubMed  Google Scholar 

  51. Clemons KV, Espiritu M, Parmar R, Stevens DA. Assessment of the paradoxical effect of caspofungin in therapy of candidiasis. Antimicrob Agents Chemother. 2006;50:1293–7.

    CAS  PubMed  Google Scholar 

  52. Lewis RE, Albert ND, Kontoyiannis DP. Comparison of the dose-dependent activity and paradoxical effect of caspofungin and micafungin in a neutropenic murine model of invasive pulmonary aspergillosis. J Antimicrob Chemother. 2008;61:1140–4.

    CAS  PubMed  Google Scholar 

  53. Arikan S, Lozano-Chiu M, Paetznick V, Rex JH. In vitro synergy of caspofungin and amphotericin B against Aspergillus and Fusarium. Antimicrob Agents Chemother. 2002;46:245–7.

    CAS  PubMed  Google Scholar 

  54. Stevens DA. Drug interaction studies of a glucan synthase inhibitor (LY 303366) and a chitin synthase inhibitor (Nikkomycin Z) for inhibition and killing of fungal pathogens. Antimicrob Agents Chemother. 2000;44:2547–8.

    CAS  PubMed  Google Scholar 

  55. Perea S, Gonzalez G, Fothergill AW, Kirkpatrick WR, Rinaldi MG, Patterson TF. In vitro interaction of caspofungin acetate with voriconazole against clinical isolates of Aspergillus spp. Antimicrob Agents Chemother. 2002;46:3039–41.

    CAS  PubMed  Google Scholar 

  56. Roling EE, Klepser ME, Wasson A, Lewis RE, Ernst EJ, Pfaller MA. Antifungal activities of fluconazole, caspofungin (MK0991), and anidulafungin (LY 303366) alone and in combination against Candida spp. and Crytococcus neoformans via time-kill methods. Diagn Microbiol Infect Dis. 2002;43:13–7.

    CAS  PubMed  Google Scholar 

  57. Hossain MA, Reyes GH, Long LA, Mukherjee PK, Ghannoum MA. Efficacy of caspofungin combined with amphotericin B against azole-resistant Candida albicans. J Antimicrob Chemother. 2003;51:1427–9.

    CAS  PubMed  Google Scholar 

  58. Manavathu EK, Alangaden GJ, Chandrasekar PH. Differential activity of triazoles in two-drug combinations with the echinocandin caspofungin against Aspergillus fumigatus. J Antimicrob Chemother. 2003;51:1423–5.

    CAS  PubMed  Google Scholar 

  59. O’Shaughnessy EM, Meletiadis J, Stergiopoulou T, Demchok JP, Walsh TJ. Antifungal interactions within the triple combination of amphotericin B, caspofungin and voriconazole against Aspergillus species. J Antimicrob Chemother. 2006;58:1168–76.

    PubMed  Google Scholar 

  60. Barchiesi F, Spreghini E, Fothergill AW, et al. Caspofungin in combination with amphotericin B against Candida glabrata. Antimicrob Agents Chemother. 2005;49:2546–9.

    CAS  PubMed  Google Scholar 

  61. Cuenca-Estrella M, Gomez-Lopez A, Garcia-Effron G, et al. Combined activity in vitro of caspofungin, amphotericin B, and azole agents against itraconazole-resistant clinical isolates of Aspergillus fumigatus. Antimicrob Agents Chemother. 2005;49:1232–5.

    CAS  PubMed  Google Scholar 

  62. Oliveira ER, Fothergill AW, Kirkpatrick WR, Coco BJ, Patterson TF, Redding SW. In vitro interaction of posaconazole and caspofungin against clinical isolates of Candida glabrata. Antimicrob Agents Chemother. 2005;49:3544–5.

    CAS  PubMed  Google Scholar 

  63. Ganesan LT, Manavathu EK, Cutright JL, Alangaden GJ, Chandrasekar PH. In-vitro activity of nikkomycin Z alone and in combination with polyenes, triazoles or echinocandins against Aspergillus fumigatus. Clin Microbiol Infect. 2004;10:961–6.

    CAS  PubMed  Google Scholar 

  64. Heyn K, Tredup A, Salvenmoser S, Muller FM. Effect of voriconazole combined with micafungin against Candida, Aspergillus, and Scedosporium spp. and Fusarium solani. Antimicrob Agents Chemother. 2005;49:5157–9.

    CAS  PubMed  Google Scholar 

  65. Philip A, Odabasi Z, Rodriguez J, et al. In vitro synergy testing of anidulafungin with itraconazole, voriconazole, and amphotericin B against Aspergillus spp. and Fusarium spp. Antimicrob Agents Chemother. 2005;49:3572–4.

    CAS  PubMed  Google Scholar 

  66. Kirkpatrick WR, Perea S, Coco BJ, Patterson TF. Efficacy of caspofungin alone and in combination with voriconazole in a guinea pig model of invasive aspergillosis. Antimicrob Agents Chemother. 2002;46:2564–8.

    CAS  PubMed  Google Scholar 

  67. Petraitis V, Petraitiene R, Sarafandi AA, et al. Combination therapy in treatment of experimental pulmonary aspergillosis: synergistic interaction between an antifungal triazole and an echinocandin. J Infect Dis. 2003;187:1834–43.

    CAS  PubMed  Google Scholar 

  68. Graybill JR, Bocanegra R, Gonzalez GM, Najvar LK. Combination antifungal therapy of murine aspergillosis: liposomal amphotericin B and micafungin. J Antimicrob Chemother. 2003;52:656–62.

    CAS  PubMed  Google Scholar 

  69. MacCallum DM, Whyte JA, Odds FC. Efficacy of caspofungin and voriconazole combinations in experimental aspergillosis. Antimicrob Agents Chemother. 2005;49:3697–701.

    CAS  PubMed  Google Scholar 

  70. Sionov E, Mendlovic S, Segal E. Efficacy of amphotericin B or amphotericin B-intralipid in combination with caspofungin against experimental aspergillosis. J Infect. 2006;53:131–9.

    PubMed  Google Scholar 

  71. Barchiesi F, Spreghini E, Tomassetti S, Arzeni D, Giannini D, Scalise G. Comparison of the fungicidal activities of caspofungin and amphotericin B against Candida glabrata. Antimicrob Agents Chemother. 2005;49:4989–92.

    CAS  PubMed  Google Scholar 

  72. Olson JA, Adler-Moore JP, Smith PJ, Proffitt RT. Treatment of Candida glabrata infection in immunosuppressed mice by using a combination of liposomal amphotericin B with caspofungin or micafungin. Antimicrob Agents Chemother. 2005;49:4895–902.

    CAS  PubMed  Google Scholar 

  73. González GM, González G, Najvar LK, Graybill JR. Therapeutic efficacy of caspofungin alone and in combination with amphotericin B deoxycholate for coccidioidomycosis in a mouse model. J Antimicrob Chemother. 2007;60:1341–6.

    PubMed  Google Scholar 

  74. Spellberg B, Fu Y, Edwards Jr JE, Ibrahim AS. Combination therapy with amphotericin B lipid complex and caspofungin acetate of disseminated zygomycosis in diabetic ketoacidotic mice. Antimicrob Agents Chemother. 2005;49:830–2.

    CAS  PubMed  Google Scholar 

  75. Frank U, Greiner M, Engels I, Daschner FD. Effects of caspofungin (MK-0991) and anidulafungin (LY303366) on phagocytosis, oxidative burst and killing of Candida albicans by human phagocytes. Eur J Clin Microbiol Infect Dis. 2004;23:729–31.

    CAS  PubMed  Google Scholar 

  76. Gil-Lamaignere C, Salvenmoser S, Hess R, Muller FM. Micafungin enhances neutrophil fungicidal functions against Candida pseudohyphae. Antimicrob Agents Chemother. 2004;48:2730–2.

    CAS  PubMed  Google Scholar 

  77. Brummer E, Chauhan SD, Stevens DA. Collaboration of human phagocytes with LY 303366 for antifungal activity against Aspergillus fumigatus. J Antimicrob Chemother. 1999;43:491–6.

    CAS  PubMed  Google Scholar 

  78. Chiller T, Farrokhshad K, Brummer E, Stevens DA. The interaction of human monocytes, monocyte-derived macrophages, and polymorphonuclear neutrophils with caspofungin (MK-0991), an echinocandin, for antifungal activity against Aspergillus fumigatus. Diagn Microbiol Infect Dis. 2001;39:99–103.

    CAS  PubMed  Google Scholar 

  79. Choi JH, Brummer E, Stevens DA. Combined action of micafungin, a new echinocandin, and human phagocytes for antifungal activity against Aspergillus fumigatus. Microbes Infect. 2004;6:383–9.

    CAS  PubMed  Google Scholar 

  80. Soustre J, Rodier MH, Imbert-Bouyer S, Daniault G, Imbert C. Caspofungin modulates in vitro adherence of Candida albicans to plastic coated with extracellular matrix proteins. J Antimicrob Chemother. 2004;53:522–5.

    CAS  PubMed  Google Scholar 

  81. Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002;46:1773–80.

    CAS  PubMed  Google Scholar 

  82. Bachmann SP, VandeWalle K, Ramage G, Patterson TF, Wickes BL, Graybill JR, et al. In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother. 2002;46:3591–6.

    CAS  PubMed  Google Scholar 

  83. Ramage G, VandeWalle K, Bachmann SP, Wickes BL, Lopez-Ribot JL. In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. Antimicrob Agents Chemother. 2002;46:3634–6.

    CAS  PubMed  Google Scholar 

  84. Ernst ME, Klepser ME, Wolfe EJ, Pfaller MA. Antifungal dynamics of LY 303366, an investigational echinocandin B analog, against Candida spp. Diagn Microbiol Infect Dis. 1996;26:125–31.

    CAS  PubMed  Google Scholar 

  85. Ernst EJ, Klepser ME, Ernst ME, Messer SA, Pfaller MA. In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis. 1999;33:75–80.

    CAS  PubMed  Google Scholar 

  86. Ernst EJ, Roling EE, Petzold CR, Keele DJ, Klepser ME. In vitro activity of micafungin (FK-463) against Candida spp.: microdilution, time-kill, and postantifungal-effect studies. Antimicrob Agents Chemother. 2002;46:3846–53.

    CAS  PubMed  Google Scholar 

  87. Petraitis V, Petraitiene R, Groll AH, et al. Comparative antifungal activity of the echinocandin micafungin against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother. 2002;46:1857–69.

    CAS  PubMed  Google Scholar 

  88. Manavathu EK, Ramesh MS, Baskaran I, Ganesan LT, Chandrasekar PH. A comparative study of the post-antifungal effect (PAFE) of amphotericin B, triazoles and echinocandins on Aspergillus fumigatus and Candida albicans. J Antimicrob Chemother. 2004;53:386–9.

    CAS  PubMed  Google Scholar 

  89. Clancy CJ, Huang H, Cheng S, Derendorf H, Nguyen MH. Characterizing the effects of caspofungin on Candida albicans, Candida parapsilosis, and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect experiments. Antimicrob Agents Chemother. 2006;50:2569–72.

    CAS  PubMed  Google Scholar 

  90. Nguyen KT, Ta P, Hoang BT, et al. Anidulafungin is fungicidal and exerts a variety of postantifungal effects against Candida albicans, C. glabrata, C. parapsilosis, and C. krusei isolates. Antimicrob Agents Chemother. 2009;53:3347–52.

    CAS  PubMed  Google Scholar 

  91. Groll AH, Mickiene D, Petraitiene R, et al. Pharmacokinetic and pharmacodynamic modeling of anidulafungin (LY303366): Reappraisal of its efficacy in neutropenic animal models of opportunistic mycoses using optimal plasma sampling. Antimicrob Agents Chemother. 2001;45:2845–55.

    CAS  PubMed  Google Scholar 

  92. Louie A, Deziel M, Liu W, Drusano MF, Gumbo T, Drusano GL. Pharmacodynamics of caspofungin in a murine model of systemic candidiasis: importance of persistence of caspofungin in tissues to understanding drug activity. Antimicrob Agents Chemother. 2005;49:5058–68.

    CAS  PubMed  Google Scholar 

  93. Andes D, Diekema DJ, Pfaller MA, Prince RA, Marchillo K, Ashbeck J, et al. In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model. Antimicrob Agents Chemother. 2008;52:539–50.

    CAS  PubMed  Google Scholar 

  94. Andes DR, Diekema DJ, Pfaller MA, Marchillo K, Bohrmueller J. In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents Chemother. 2008;52:3497–503.

    CAS  PubMed  Google Scholar 

  95. Wiederhold NP, Kontoyiannis DP, Chi J, Prince RA, Tam VH, Lewis RE. Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis: Evidence of concentration-dependent activity. J Infect Dis. 2004;190:1464–71.

    CAS  PubMed  Google Scholar 

  96. Kartsonis N, Killar J, Mixson L, et al. Caspofungin susceptibility testing of isolates from patients with esophageal candidiasis or invasive candidiasis: relationship of MIC to treatment outcome. Antimicrob Agents Chemother. 2005;49:3616–23.

    CAS  PubMed  Google Scholar 

  97. Pfaller MA, Diekema DJ, Ostrosky-Zeichner L, et al. Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol. 2008;46:2620–9.

    CAS  PubMed  Google Scholar 

  98. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard – third edition; CLSI document M27-A3(28). 2008. Clinical and laboratory Standards Institute, Pennsylvania, USA.

    Google Scholar 

  99. Rodriguez-Tudela JL, Arendrup MC, Barchiesi F, et al. EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. ClinMicrobiol Infect. 2008;14:398–405.

    CAS  Google Scholar 

  100. Rodriguez-Tudela JL, Donnelly JP, Pfaller MA, et al. Statistical analyses of correlation between fluconazole MICs for Candida spp. assessed by standard methods set forth by the European Committee on Antimicrobial Susceptibility Testing (E.Dis. 7.1) and CLSI (M27-A2). J ClinMicrobiol. 2007;45:109–11.

    CAS  PubMed  Google Scholar 

  101. Arendrup MC, Garcia-Effron G, Lass-Flörl C, et al. Susceptibility testing of Candida species to echinocandins: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion and agar-dilution using RPMI and IsoSensitest medium. Antimicrob Agents Chemother. 2010;54:426–39.

    CAS  PubMed  Google Scholar 

  102. Dowell JA, Knebel W, Ludden T, Stogniew M, Krause D, Henkel T. Population pharmacokinetic analysis of anidulafungin, an echinocandin antifungal. J Clin Pharmacol. 2004;44:590–8.

    CAS  PubMed  Google Scholar 

  103. Dowell JA, Stogniew M, Krause D, Damle B. Anidulafungin does not require dosage adjustment in subjects with varying degrees of hepatic or renal impairment. J Clin Pharmacol. 2007;47:461–70.

    CAS  PubMed  Google Scholar 

  104. Benjamin Jr DK, Driscoll T, Seibel NL, et al. Safety and pharmacokinetics of intravenous anidulafungin in children with neutropenia at high risk for invasive fungal infections. Antimicrob Agents Chemother. 2006;50:632–8.

    CAS  PubMed  Google Scholar 

  105. Krause DS, Reinhardt J, Vazquez JA, et al. Phase 2, randomized, dose-ranging study evaluating the safety and efficacy of anidulafungin in invasive candidiasis and candidemia. Antimicrob Agents Chemother. 2004;48:2021–4.

    CAS  PubMed  Google Scholar 

  106. Krause DS, Simjee AE, van Rensburg C, et al. A randomized, double-blind trial of anidulafungin versus fluconazole for the treatment of esophageal candidiasis. Clin Infect Dis. 2004;39:770–5.

    CAS  PubMed  Google Scholar 

  107. Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007;356:2472–82.

    CAS  PubMed  Google Scholar 

  108. Vazquez JA, Schranz JA, Clark K, Goldstein BP, Reboli A, Fichtenbaum C. A phase 2, open-label study of the safety and efficacy of intravenous anidulafungin as a treatment for azole-refractory mucosal candidiasis. J Acquir Immune Defic Syndr. 2008;48:304–9.

    CAS  PubMed  Google Scholar 

  109. Ecalta™ Summary of Product Characteristics. European Medicines Agency. 2009. http://www.emea.europa.eu/humandocs/Humans/EPAR/ecalta/ecalta.htm. Accessed 23 July 2009.

  110. Eraxis™ U.S. Prescribers Information. U.S. Food and Drug Administration. 2006. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction  =  Search.Label_ApprovalHistory. Accessed 17 Feb 2006.

  111. Dowell JA, Stogniew M, Krause D, Henkel T, Weston IE. Assessment of the safety and pharmacokinetics of anidulafungin when administered with cyclosporine. J Clin Pharmacol. 2005;45:227–33.

    CAS  PubMed  Google Scholar 

  112. Dowell JA, Schranz J, Baruch A, Foster G. Safety and pharmacokinetics of coadministered voriconazole and anidulafungin. J Clin Pharmacol. 2005;45:1373–82.

    CAS  PubMed  Google Scholar 

  113. Dowell JA, Stogniew M, Krause D, Henkel T, Damle B. Lack of pharmacokinetic interaction between anidulafungin and tacrolimus. J Clin Pharmacol. 2007;47:305–14.

    CAS  PubMed  Google Scholar 

  114. Neely M, Jafri HS, Seibel N, et al. Pharmacokinetics and safety of caspofungin in older infants and toddlers. Antimicrob Agents Chemother. 2009;53:1450–6.

    CAS  PubMed  Google Scholar 

  115. Sáez-Llorens X, Macias M, Maiya P, et al. Pharmacokinetics and safety of caspofungin in neonates and infants less than 3 months of age. Antimicrob Agents Chemother. 2009;53:869–75.

    PubMed  Google Scholar 

  116. Villanueva A, Gotuzzo E, Arathoon EG, et al. A randomized ­double-blind study of caspofungin versus fluconazole for the treatment of esophageal candidiasis. Am J Med. 2002;113:294–9.

    CAS  PubMed  Google Scholar 

  117. Stone JA, Holland SD, Wickersham PJ, et al. Single- and ­multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob Agents Chemother. 2002;46:739–45.

    CAS  PubMed  Google Scholar 

  118. Sandhu P, Lee W, Xu X, et al. Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005;33:676–82.

    CAS  PubMed  Google Scholar 

  119. Sandhu P, Xu X, Bondiskey PJ, et al. Disposition of caspofungin, a novel antifungal agent, in mice, rats, rabbits, and monkeys. Antimicrob Agents Chemother. 2004;48:1272–80.

    CAS  PubMed  Google Scholar 

  120. Balani SK, Xu X, Arison BH, et al. Metabolites of caspofungin acetate, a potent antifungal agent, in human plasma and urine. Drug Metab Dispos. 2000;28:1274–8.

    CAS  PubMed  Google Scholar 

  121. Mistry GC, Migoya E, Deutsch PJ, et al. Single- and multiple-dose administration of caspofungin in patients with hepatic insufficiency: Implications for safety and dosing recommendations. J Clin Pharmacol. 2007;47:951–61.

    CAS  PubMed  Google Scholar 

  122. Villanueva A, Arathoon EG, Gotuzzo E, Berman RS, DiNubile MJ, Sable CA. A randomized double-blind study of caspofungin versus amphotericin for the treatment of candidal esophagitis. Clin Infect Dis. 2001;33:1529–35.

    CAS  PubMed  Google Scholar 

  123. Arathoon EG, Gotuzzo E, Noriega LM, Berman RS, DiNubile MJ, Sable CA. Randomized, double-blind, multicenter study of caspofungin versus amphotericin B for treatment of oropharyngeal and esophageal candidiasis. Antimicrob Agents Chemother. 2002;46:451–7.

    CAS  PubMed  Google Scholar 

  124. Kartsonis N, DiNubile MJ, Bartizal K, Hicks PS, Ryan D, Sable CA. Efficacy of caspofungin in the treatment of esophageal candidiasis resistant to fluconazole. J Acquir Immune Defic Syndr. 2002;3:183–7.

    Google Scholar 

  125. Mora-Durate J, Betts R, Rotstein C, et al. Comparison of ­caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–9.

    Google Scholar 

  126. Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45:883–93.

    CAS  PubMed  Google Scholar 

  127. Betts RF, Nucci M, Talwar D, et al. A multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis. 2009;48:1676–84.

    CAS  PubMed  Google Scholar 

  128. Cornely OA, Lasso M, Betts R, et al. Caspofungin for the treatment of less common forms of invasive candidiasis. J Antimicrob Chemother. 2007;60:363–9.

    CAS  PubMed  Google Scholar 

  129. Betts R, Glasmacher A, Maertens J, et al. Efficacy of caspofungin against invasive Candida or invasive Aspergillus infections in neutropenic patients. Cancer. 2006;106:466–73.

    CAS  PubMed  Google Scholar 

  130. Maertens J, Raad I, Petrikkos G, et al. Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis. 2004;39:1563–71.

    CAS  PubMed  Google Scholar 

  131. Viscoli C, Herbrecht R, Akan H, et al. An EORTC Phase II study of caspofungin as first-line therapy of invasive aspergillosis in haematological patients. J Antimicrob Chemother. 2009;64:1274–81.

    CAS  PubMed  Google Scholar 

  132. Herbrecht R, Maertens J, Biala L, et al. Caspofungin as first line therapy of invasive aspergillosis in allogeneic hematopoietic stem cell transplant recipients: A study of the EORTC Infectious Diseases Group. Program and Abstracts of the 49th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC: abst. M-2168, p. 674 (2009).

    Google Scholar 

  133. Marr KA, Boeckh M, Carter RA, Kim HW, Corey L. Combination antifungal therapy for invasive aspergillosis. Clin Infect Dis. 2004;39:797–802.

    CAS  PubMed  Google Scholar 

  134. Kontoyiannis DP, Hachem R, Lewis RE, et al. Efficacy and toxicity of caspofungin in combination with liposomal amphotericin B as primary or salvage treatment of invasive aspergillosis in patients with hematologic malignancies. Cancer. 2003;98:292–9.

    CAS  PubMed  Google Scholar 

  135. Maertens J, Glasmacher A, Herbrecht R, et al. Multicenter, noncomparative study of caspofungin in combination with other antifungals as salvage therapy in adults with invasive aspergillosis. Cancer. 2006;107:2888–97.

    CAS  PubMed  Google Scholar 

  136. Caillot D, Thiébaut A, Herbrecht R, et al. Liposomal amphotericin B in combination with caspofungin for invasive aspergillosis in patients with hematologic malignancies: a randomized pilot study (Combistrat trial). Cancer. 2007;110:2740–6.

    CAS  PubMed  Google Scholar 

  137. Reed C, Bryant R, Ibrahim AS, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis. 2008;47:364–71.

    CAS  PubMed  Google Scholar 

  138. Walsh TJ, Teppler H, Donowitz GR, et al. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N Engl J Med. 2004;351:1391–402.

    CAS  PubMed  Google Scholar 

  139. Mattiuzzi GN, Alvarado G, Giles FJ, et al. Open-label, randomized comparison of itraconazole versus caspofungin for prophylaxis in patients with hematologic malignancies. Antimicrob Agents Chemother. 2006;50:143–7.

    CAS  PubMed  Google Scholar 

  140. Maertens JA, Madero-Lopez L, Reilly AF, et al. A randomized, double-blind, multicenter study of caspofungin versus liposomal amphotericin B for empirical antifungal therapy in pediatric patients with persistent fever and neutropenia. Pediatr Infect Dis J. 2010;29(5):415–20.

    PubMed  Google Scholar 

  141. Zaoutis TE, Jafri HS, Huang LM, et al. A prospective, multicenter study of caspofungin for the treatment of documented Candida or Aspergillus infections in pediatric patients. Pediatrics. 2009;123:877–84.

    PubMed  Google Scholar 

  142. Odio CM, Araya R, Pinto LE, et al. Caspofungin therapy of ­neonates with invasive candidiasis. Pediatr Infect Dis J. 2004;23:1093–7.

    PubMed  Google Scholar 

  143. Natarajan G, Lulic-Botica M, Rongkavilit C, Pappas A, Bedard M. Experience with caspofungin in the treatment of persistent fungemia in neonates. J Perinatol. 2005;25:770–7.

    CAS  PubMed  Google Scholar 

  144. Odio CM, Castro CE, Vasques S, Lazo J, Herrera ML. Caspofungin therapy for neonates with invasive candidiasis cared for at intensive care units. In Program and Abstracts of the 47th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC: abst. G-976, p. 270 (2007).

    Google Scholar 

  145. Cancidas™ U.S. Prescribers Information. U.S. Food and Drug Administration. 2009. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Label_ApprovalHistory. Accessed 26 June 2009.

  146. Cancidas™ Summary of Product Characteristics. European Medicines Agency. 2009. http://www.emea.europa.eu/humandocs/Humans/EPAR/cancidas/cancidas.htm. Accessed 23 July 2009.

  147. Cleary JD, Schwartz M, Rogers PD, de Mestral J, Chapman SW. Effects of amphotericin B and caspofungin on histamine expression. Pharmacotherapy. 2003;23:966–73.

    CAS  PubMed  Google Scholar 

  148. Sable CA, Nguyen BY, Chodakewitz JA, DiNubile MJ. Safety and tolerability of caspofungin acetate in the treatment of fungal infections. Transpl Infect Dis. 2002;4:25–30.

    CAS  PubMed  Google Scholar 

  149. Glasmacher A, Cornely OA, Orlopp K, et al. Caspofungin treatment in severely ill, immunocompromised patients: a case-documentation study of 118 patients. J Antimicrob Chemother. 2006;57:127–34.

    CAS  PubMed  Google Scholar 

  150. Groll AH, Attarbaschi A, Schuster FR, et al. Treatment with caspofungin in immunocompromised paediatric patients: a multicentre survey. J Antimicrob Chemother. 2006;57:527–35.

    CAS  PubMed  Google Scholar 

  151. Zaoutis T, Lehrnbecher T, Groll AH, et al. Safety experience with caspofungin in pediatric patients. Pediatr Infect Dis J. 2009;28:1132–5.

    PubMed  Google Scholar 

  152. Marr KA, Hachem R, Papanicolaou G, et al. Retrospective study of the hepatic safety profile of patients concomitantly treated with caspofungin and cyclosporin A. Transpl Infect Dis. 2004;6:110–6.

    CAS  PubMed  Google Scholar 

  153. Sanz-Rodriguez C, Lopez-Duarte M, Jurado M, et al. Safety of the concomitant use of caspofungin and cyclosporin A in patients with invasive fungal infections. Bone Marrow Transplant. 2004;34:13–20.

    CAS  PubMed  Google Scholar 

  154. Stone JA, Migoya EM, Hickey L, et al. Potential for interactions between caspofungin and nelfinavir or rifampin. Antimicrob Agents Chemother. 2004;48:4306–14.

    CAS  PubMed  Google Scholar 

  155. Colburn DE, Giles FJ, Oladovich D, Smith JA. In vitro evaluation of cytochrome P450-mediated drug interactions between cytarabine, idarubicin, itraconazole and caspofungin. Hematology. 2004;9:217–21.

    CAS  PubMed  Google Scholar 

  156. Hiemenz J, Cagnoni P, Simpson D, et al. Pharmacokinetic and maximum tolerated dose study of micafungin in combination with fluconazole versus fluconazole alone for prophylaxis of fungal infections in adult patients undergoing a bone marrow or peripheral stem cell transplant. Antimicrob Agents Chemother. 2005;49:1331–6.

    CAS  PubMed  Google Scholar 

  157. Tabata K, Katashima M, Kawamura A, Kaibara A, Tanigawara Y. Population pharmacokinetic analysis of micafungin in Japanese patients with fungal infections. Drug Metab Pharmacokinet. 2006;21:324–31.

    CAS  PubMed  Google Scholar 

  158. Gumbo T, Hiemenz J, Ma L, Keirns JJ, Buell DN, Drusano GL. Population pharmacokinetics of micafungin in adult patients. Diagn Microbiol Infect Dis. 2008;60:329–31.

    CAS  PubMed  Google Scholar 

  159. Hebert MF, Smith HE, Marbury TC, et al. Pharmacokinetics of micafungin in healthy volunteers, volunteers with moderate liver disease, and volunteers with renal dysfunction. J Clin Pharmacol. 2005;45:1145–52.

    CAS  PubMed  Google Scholar 

  160. Hope WW, Seibel NL, Schwartz CL, et al. Population ­pharmacokinetics of micafungin in pediatric patients and implications for antifungal dosing. Antimicrob Agents Chemother. 2007;51:3714–9.

    CAS  PubMed  Google Scholar 

  161. Hope WW, Mickiene D, Petraitis V, et al. The pharmacokinetics and pharmacodynamics of micafungin in experimental hematogenous Candida meningoencephalitis: implications for echinocandin therapy in neonates. J Infect Dis. 2008;197:163–71.

    CAS  PubMed  Google Scholar 

  162. Kishino S, Ohno K, Shimamura T, Furukawatodo H. Optimal prophylactic dosage and disposition of micafungin in living donor liver recipients. Clin Transplant. 2004;18:676–80.

    PubMed  Google Scholar 

  163. Seibel NL, Schwartz C, Arrieta A, et al. Safety, tolerability, and pharmacokinetics of micafungin (FK463) in febrile neutropenic pediatric patients. Antimicrob Agents Chemother. 2005;49:3317–24.

    CAS  PubMed  Google Scholar 

  164. Heresi GP, Gerstmann DR, Reed MD, et al. The pharmacokinetics and safety of micafungin, a novel echinocandin, in premature infants. Pediatr Infect Dis J. 2006;25:1110–5.

    PubMed  Google Scholar 

  165. Benjamin Jr DK, Smith PB, Arrieta A, et al. Safety and pharmacokinetics of repeat-dose micafungin in young infants. Clin Pharmacol Ther. 2010;87:93–9.

    PubMed  Google Scholar 

  166. Smith PB, Walsh TJ, Hope W, et al. Pharmacokinetics of an elevated dosage of micafungin in premature neonates. Pediatr Infect Dis J. 2009;28:412–5.

    PubMed  Google Scholar 

  167. Pettengell K, Mynhardt J, Kluyts T, Lau W, Facklam D, Buell D. FK463 South African Study Group. Successful treatment of oesophageal candidiasis by micafungin: a novel systemic antifungal agent. Aliment Pharmacol Ther. 2004;20:475–81.

    CAS  PubMed  Google Scholar 

  168. de Wet N, Llanos-Cuentas A, Suleiman J, et al. A randomized, double-blind, parallel-group, dose-response study of micafungin compared with fluconazole for the treatment of esophageal candidiasis in HIV-positive patients. Clin Infect Dis. 2004;39:842–9.

    PubMed  Google Scholar 

  169. de Wet NT, Bester AJ, Viljoen JJ, et al. A randomized, double blind, comparative trial of micafungin (FK463) vs. fluconazole for the treatment of oesophageal candidiasis. Aliment Pharmacol Ther. 2005;21:899–907.

    PubMed  Google Scholar 

  170. Kuse ER, Chetchotisakd P, da Cunha CA, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet. 2007;369:1519–27.

    CAS  PubMed  Google Scholar 

  171. Ostrosky-Zeichner L, Kontoyiannis D, Raffalli J, et al. International, open-label, noncomparative, clinical trial of micafungin alone and in combination for treatment of newly diagnosed and refractory candidemia. Eur J Clin Microbiol Infect Dis. 2005;24:654–61.

    CAS  PubMed  Google Scholar 

  172. Denning DW, Marr KA, Lau WM, et al. Micafungin (FK463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis. J Infect. 2006;53:337–49.

    PubMed  Google Scholar 

  173. Kontoyiannis DP, Ratanatharathorn V, Young JA, et al. Micafungin alone or in combination with other systemic antifungal therapies in hematopoietic stem cell transplant recipients with invasive aspergillosis. Transpl Infect Dis. 2009;11:89–93.

    CAS  PubMed  Google Scholar 

  174. van Burik JA, Ratanatharathorn V, Stepan DE, et al. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis. 2004;39:1407–16.

    PubMed  Google Scholar 

  175. Hiramatsu Y, Maeda Y, Fujii N, et al. Use of micafungin versus fluconazole for antifungal prophylaxis in neutropenic patients receiving hematopoietic stem cell transplantation. Int J Hematol. 2008;88:588–95.

    CAS  PubMed  Google Scholar 

  176. Queiroz-Telles F, Berezin E, Leverger G, et al. Micafungin versus liposomal amphotericin B for pediatric patients with invasive candidiasis: substudy of a randomized double-blind trial. Pediatr Infect Dis J. 2008;27:820–6.

    PubMed  Google Scholar 

  177. Sirohi B, Powles RL, Chopra R, et al. A study to determine the safety profile and maximum tolerated dose of micafungin (FK463) in patients undergoing haematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;38:47–51.

    CAS  PubMed  Google Scholar 

  178. Cornely O, Maddison P, Ullmann JA. Pooled analysis of safety for micafungin. In: Abstracts of the 47th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology: abst. M 1175, p. 444 (2007).

    Google Scholar 

  179. Mycamine™ Summary of Product Characteristics. European Medicines Agency. 2008. http://www.emea.europa.eu/humandocs/Humans/EPAR/mycamine/mycamine.htm. Acessed 31 Oct 2008.

  180. Niwa T, Inoue-Yamamoto S, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 1A2, CYP2D6, and CYP2E1 activities in human liver microsomes. Biol Pharm Bull. 2005;28:1813–6.

    CAS  PubMed  Google Scholar 

  181. Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull. 2005;28:1805–8.

    CAS  PubMed  Google Scholar 

  182. Sakaeda T, Iwaki K, Kakumoto M, et al. Effect of micafungin on cytochrome P450 3A4 and multidrug resistance protein 1 activities, and its comparison with azole antifungal drugs. J Pharm Pharmacol. 2005;57:759–64.

    CAS  PubMed  Google Scholar 

  183. Mycamine™ U.S. Prescribers Information. U.S. Food and Drug Administration. 2008. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Label_ApprovalHistory. Accessed 22 Jan 2008.

  184. Hebert MF, Blough DK, Townsend RW, et al. Concomitant tacrolimus and micafungin pharmacokinetics in healthy volunteers. J Clin Pharmacol. 2005;45:1018–24.

    CAS  PubMed  Google Scholar 

  185. Keirns J, Sawamoto T, Holum M, Buell D, Wisemandle W, Alak A. Steady-state pharmacokinetics of micafungin and voriconazole after separate and concomitant dosing in healthy adults. Antimicrob Agents Chemother. 2007;51:787–90.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Groll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Groll, A.H., Schrey, D., Walsh, T.J. (2011). Echinocandins. In: Kauffman, C., Pappas, P., Sobel, J., Dismukes, W. (eds) Essentials of Clinical Mycology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6640-7_6

Download citation

Publish with us

Policies and ethics