Skip to main content

Quantum Carpets: Factorization with Degeneracies

  • Chapter
  • First Online:
Classical, Semi-classical and Quantum Noise

Abstract

In this paper, we connect our approach of factoring numbers using the continuous truncated Gauss sum (Wölk et al., J. Mod. Optic, 2009) with the phenomenon of quantum carpets. In particular, we demonstrate that the degree of degeneracy of the ratio N translates into a crossing of the canals and ridges contained in the design of quantum carpets. In this way, quantum carpets represent an experimental implementation of our idea of factorization with degeneracies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett J, Kaplan J (2002) Bartlett’s familiar quotations. Little, Brown and Company, Boston

    Google Scholar 

  2. Middleton D (1960) An introduction to statistical communication theory. McGraw-Hill, New York

    MATH  Google Scholar 

  3. Berry M, Marzoli I, Schleich WP (2001) Quantum carpets, carpets of light. Phys World 14:39

    Article  Google Scholar 

  4. Kaplan AE, Marzoli I, Lamb WE Jr., Schleich WP (2000) Multimode interference: highly regular pattern formation in quantum wave packet evolution. Phys Rev A 61:032101

    Article  Google Scholar 

  5. Marzoli I, Saif F, Bialynicki-Birula I, Friesch OM, Kaplan AE, Schleich WP (1998) Quantum Carpets made simple. Acta Physica Slovaca 48:323

    Google Scholar 

  6. For a recent overview see for example Marzoli I, Kaplan AE, Saif F, Schleich WP (2008) Quantum carpets of a slightly relativistic particle. Fortschr. d. Physik 56:967

    Article  MathSciNet  Google Scholar 

  7. Nowak S, Kurtsiefer Ch., Pfau T, David C (1997) High-order Talbot fringes for atomic matter waves. Opt Lett 22:1430

    Article  Google Scholar 

  8. Ahn J, Hutchinson DN, Rangan C, Bucksbaum PH (2001) Quantum phase retrivial of a Rydberg wave packet using a half-cycle pulse. Phys Rev Lett 86:1179

    Article  Google Scholar 

  9. Katsuki H, Chiba H, Meier Ch., Girard B, Ohmori K (2009) Actively tailored spatiotemporal images of quantum interference on the picometer and femtosecond scales. Phys Rev Lett 102:103602; see also the excellent review by Ohmori K (2009); Wave-packet and coherent dynamics. Annu Rev Phys Chem 60:487

    Google Scholar 

  10. Deng L, Hagley EW, Denschlag J, Simsarian JE, Edwards M, Clark CW, Helmerson K, Roston SL, Philipps WD (1999) Temporal, matter-wave-dispersion Talbot effect. Phys Rev Lett 83:5407

    Article  Google Scholar 

  11. Gustavsson M, Haller E, Mark MJ, Danzl JG, Hart R, Daley AJ, Nägerl H-C (2010) Interference of interacting matter waves. New J Phys 12:065029

    Article  Google Scholar 

  12. Berry MV, Klein S (1996) Integer, fractional and fractal Talbot effect. J Mod Opt 43:2139

    Article  MathSciNet  Google Scholar 

  13. Case WB, Tomandl M, Deachapunya S, Arndt M (2009) Realization of optica carpets in the Talbot and Talbot-Lau configuration. Opt Express 17:20966

    Article  Google Scholar 

  14. See for example Maier H, Schleich WP (2012) Prime numbers 101: A primer on number theory. Wiley-VCH, New York

    Google Scholar 

  15. Shor P (1994) In: Goldwasser S (ed) Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, IEEE Computer Society Press, New York, pp. 124–134, ; for an elementary introduction to the Shor algorithm see for example Mack R, Schleich WP, Haase D, Maier H (2009) In: Arendt W, Schleich WP (eds.) Mathematical Analysis of Evolution, Information and Complexity. Wiley-VCH, Berlin

    Google Scholar 

  16. Mack H, Bienert M, Haug F, Straub FS, Freyberger M, Schleich WP (2002) In: Mataloni P, De Martini F (eds.) Experimental quantum computation and information. Elsevier, Amsterdam

    Google Scholar 

  17. Wölk S, Merkel W, Schleich WP, Averbukh ISh, Girard B (2011) Factorization of numbers with Gauss sums: I. mathematical background. New J Phys 13:103007

    Article  Google Scholar 

  18. See for example Mehring M, Müller K, Averbukh ISh, Merkel W, Schleich WP (2007) NMR experiment factors numbers with Gauss sums. Phys Rev Lett 98:120502; Mahesh T, Rajendran N, Peng X, Suter D (2007) Factoring numbers with the Gauss sum technique: NMR implementations. Phys Rev A 75:062303; Gilowski M, Wendrich T, Müller T, Jentsch C, Ertmer W, Rasel EM, Schleich WP (2008) Gauss sum Factorization with cold atoms. Phys Rev Lett 100:030201; Sadgrove M, Kumar S, Nakagawa K (2008) Enhanced factoring with a Bose-Einstein condensate. Phys Rev Lett 101:180502; Tamma V, Zhang H, He X, Garruccio A, Schleich WP, Shih Y (2011) Factoring numbers with a single interferogram. Phys Rev A 83:020304

    Google Scholar 

  19. Wölk S, Feiler C, Schleich WP (2009) Factorization of numbers with truncated Gauss sums at rational arguments. J Mod Opt 56:2118

    Article  Google Scholar 

  20. Schleich WP (2001) Quantum optics in phase space. Wiley-VCH, Weinheim

    Book  Google Scholar 

  21. Harter W (2001) Quantum-fractal revival structure in CN quadratic spectra: Base-N quantum computer registers. Phys Rev A 64:012312

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to M. Jakob, K.A.H. van Leuwwen, M. Štefańǎk, and M.S. Zubairy for many fruitful discussions on this topic. In this context, one of us (WPS) appreciates the inspiring discussions at the University of Vienna in the summer of 2009 with W. Case and M. Tomandl. This research was partially supported by the Max Planck Prize of WPS awarded by the Humboldt Foundation and the Max Planck Society. Moreover, WPS expresses his sincere thanks to the organizers L. Cohen and M.O. Scully of the Middleton Festival in Princeton 2007 for a most stimulating conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Wölk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wölk, S., Schleich, W.P. (2012). Quantum Carpets: Factorization with Degeneracies. In: Cohen, L., Poor, H., Scully, M. (eds) Classical, Semi-classical and Quantum Noise. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6624-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6624-7_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6623-0

  • Online ISBN: 978-1-4419-6624-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics