Skip to main content

Beads and Special Applications of Polymers for Agricultural Uses

  • Chapter
  • First Online:

Abstract

The concept of bead encapsulation has become highly relevant to agriculture. Beads can encapsulate microorganisms for use in the field of bacterial- inoculation technology. Immobilized plant cell suspensions and single seed products have proven to be easy to produce, store, and handle during industrial operation. This chapter describes the goals of encapsulation in agriculture,: e.g., to temporarily protect the encapsulated microorganisms from the soil environment and microbial competition and to release them gradually for the colonization of plant roots. Special cases for enlarging populations in which the entrapped bacterial biomass is low are described; other cases in which, for example, immobilized fungi are used as biocontrol agents against soil-borne pathogens are thoroughly detailed; survival of bead-entrapped populations is compared with that of populations encapsulated in peat, and the influence of special additives on bacterial survival isare described. In addition, timing and methods for the application of bacterial inoculants are delineated. In particular, topics such as carriers for the slow release of bacteria that affect plant growth, inoculation of seedlings and plants with beads containing fungal inoculum, joint immobilization of plant -growth-promoting bacteria and green microalgae, cryopreservation by encapsulation/dehydration technique, and controlled release of agricultural chemicals are discussed at length. The chapter also supports the reader with a list of biotechnological applications such as gene-delivery systems using beads, bioactive bead methods for obtaining transgenic plants and in synthetic seed technology, and describes unique applications of polymers, including superabsorbent polymers and seed coating.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aburjal, T., Bernasconi, S., Manzocchi, L. A., and Pelizzoni, F. 1997. Effect of calcium and cell immobilization on the production of choleocalciferol and its derivatives by Solanum malacoxylon cell cultures. Phytochemistry 46:1015–1018.

    Article  Google Scholar 

  • Adriani, M., Piccioni, E., and Standardi, A. 2000. Effects of different treatments on the conversion of ‘Hayward’ kiwifruit synthetic seeds to whole plants following encapsulation of in vitro derived buds. New Zeal. J. Crop Hort. Sci. 28:59–67.

    Article  Google Scholar 

  • Albrecht, S. L., Okon, Y., Lonnquist, J., and Burms, R. H. 1981. Nitrogen-fixation by corn-Azospirillum associations in a temperate climate. Crop Sci. 21:301–306.

    Article  CAS  Google Scholar 

  • Allan, G. G., Beer, J. W., Cousin, M. J., and Mikels, R. A. 1980. The biodegradative controlled release of pesticides from polymeric substrates. In: Controlled Release Technologies: Methods, Theory and Applications, vol. II, ed. A. F. Kydonieus, chap. 2, pp. 7–62. Boca Raton, FL: CRC.i

    Google Scholar 

  • Ara, H., Jaiswal, U., and Jaiswal, V. S. 2000. Synthetic seed: prospects and limitations. Curr. Sci. 78:1438–1444.

    Google Scholar 

  • Bajaj, Y. P. S. 1990a. Cryopreservation of germplasm of wheat. In: Biotechnology in Agriculture and Forestry, vol. 13: Wheat, ed. Y. P. S. Bajaj, pp. 670–681. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Bajaj, Y. P. S. 1990b. Cryopreservation of germplasm of legumes and oilseed crops. In: Biotechnology in Agriculture and Forestry, vol. 10: Legume and Oil Seeded Crops I, ed. Y. P. S. Bajaj, pp. 49–62. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Bajaj, Y. P. S., and Sala, F. 1991. Cryopreservation of germplasm of rice. In: Biotechnology in Agriculture and Forestry, vol. 14: Rice, ed. Y. P. S. Bajaj, pp. 553–571. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Bashan, Y. 1986. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Env. Microbiol. 51:1089–1098.

    CAS  Google Scholar 

  • Bashan, Y., Hernandez, J. P., Leyva, L. A., and Bacilio, M. 2002. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fert. Soils 35:359–368.

    Article  Google Scholar 

  • Bhattacharya, R., and Bhattacharya, S. 2001. High frequency in vitro propagation of Phyllanthus amarus Schum & Thonn by culture. Ind. J. Exp. Biol. 39:1184–1187.

    Google Scholar 

  • Birnbaum, S., Pendleton, R., Larsson, P. O., and Mosbach. K. 1981. Covalent stabilization of alginate gel for the entrapment of living whole cells. Biotechnol. Lett. 8:393–400.

    Article  Google Scholar 

  • Borchard, G. 2001. Chitosans for gene delivery. Adv. Drug Deliv. Rev. 52:145–150.

    Article  CAS  Google Scholar 

  • Boussif, O., Lezouak’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J.-P. 1995. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92:7297–7301.

    Article  CAS  Google Scholar 

  • Brischia, R., Piccioni, E., and Standardi, A. 2002. A new protocol for production of encapsulated differentiating propagules. Plant Cell Tiss. Organ Cult. 68:137–141.

    Article  Google Scholar 

  • Brodelius, p. 1983. Immobilized plant cells. In: Immobilized Cells and Organelles, vol. 1, ed. B. Mattiasson, pp. 27–55. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Brodelius, p. 1985. The potential role of immobilization in plant cell biotechnology. Trends Biotechnol. 3:280–285.

    Article  CAS  Google Scholar 

  • Brodelius, P., and Mosbach, K. 1982. Immobilized plant cells. In: Advances in Applied Microbiology, vol. 28, ed. A. Laskin, pp. 1–26. New York: Academic.

    Chapter  Google Scholar 

  • Brodelius, P., and Nilsson, K. 1980. Entrapment of plant cells in different matrix. FEBS Lett. 122:312–316.

    Article  CAS  Google Scholar 

  • Calixto, J. B., Santos, A. R. S., Cechinel, F. V., and Yunes, R. A. 1998. A review of the plants of the genus Phyllanthus: their chemistry, pharmacology and therapeutic potential. Res. Med. Rev. 4:225–228.

    Article  Google Scholar 

  • Chand, S., and Singh, A. K. 2004. Plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb.—a timber-yielding leguminous tree. J. Plant Physiol. 161: 237–243.

    Article  CAS  Google Scholar 

  • Chen, J. L., and Beversdorf, W. D. 1992. Cryopreservation of isolated microspores of spring rapeseed (Brassica napus L.) for in vitro embryo production. Plant Cell Tiss. Organ Cult. 31:141–149.

    Article  Google Scholar 

  • Chibata, I., and Tosa, T. 1977. Transformation of organic compounds by immobilized microbial cells. Adv. Appl. Microbiol. 22:1–27.

    Article  CAS  Google Scholar 

  • Cornejo-Martin, J., Wong, V. L., and Blech, A. E. 1995. Cryopreserved callus: a source of protoplast for rice transformation. Plant Cell Rep. 14:210–214.

    Google Scholar 

  • Cottrell, I. W., and Kovacs, p. 1977. Algin. In: Food Colloids, ed. H. D. Graham, pp. 438–463.Westport, CT: AVI Publishing Co.

    Google Scholar 

  • Coulibaly, Y., and Demarly, Y. 1979. Androgenese in vitro chez Oryza sativa var. Cigalon a partir d´antheres conservees dans l’azote liquide (21968C). L’Agronomie Tropicale 34:74–79.

    Google Scholar 

  • Dandurand, L. M., and Knudsen, G. R. 1993. Influence of Pseudomonas fluorescens on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83:265–270.

    Article  Google Scholar 

  • Danso, K. E., and Ford-Lloyd, B. V. 2003. Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm. Plant Cell Rep. 21:718–725.

    CAS  Google Scholar 

  • de-Bashan, L. E., and Bashan, Y. 2008. Joint Immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl. Env. Microbiol. 74:6797–6802.

    Article  CAS  Google Scholar 

  • Declerck, S., Risede, J. M., and Delvaux, B. 2002. Greenhouse response of micropropagated bananas inoculated with in vitro monoxenically produced arbuscular mycorrhizal fungi. Sci. Hort. 93:301–309.

    Article  Google Scholar 

  • Dommergues, Y. R., Diemn, H. G., and Divies, C. 1979. Polyacrylamide-entrapped Rhizobium as an inoculant for legumes. Appl. Environ. Microbiol. 37:779–781.

    CAS  Google Scholar 

  • Dornenburg, H., and Knorr, D. 1995. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb. Technol. 17:674–684.

    Article  Google Scholar 

  • Engelmann, F. 1997. In vitro conservation methods. In: Biotechnology and Plant Genetic Resources: Conservation and Use, ed. J. A. Callow, B. V. Ford-Lloyd, H. J. Newbury, pp. 119–161. Wallingford, UK: CAB International.

    Google Scholar 

  • Fabre, J., and Dereuddre, J. 1990. Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot-tips. CryoLetters 11:413–426.

    Google Scholar 

  • Fages, J. 1989. An optimized process for manufacturing an Azospirillum inoculant for crops. Appl. Microbiol. Biotechnol. 32:473–478.

    Google Scholar 

  • Ferraris, R. 1989. Gel seeding of sorghum into Mywybilla clay. Proc. Aust. Sorghum Workshop, Toowoomba, Queensland, 28 Feb-1 Mar, Occasional Publications, Australian Institute of Agricultural Science No. 43, ed. M. A. Foale, B. W. Hare, R.G Henzell. Brisbane, Queensland, Australia: Australian Institute of Agricultural Science.

    Google Scholar 

  • Fortin, J. A., Bécard, G., Declerck, S., Dalpé, Y., St. Arnaud, M., Coughlan, A. P., and Piché, Y. 2002. Arbuscular mycorrhiza on root-organ cultures. Can. J. Bot. 80:1–20.

    Article  CAS  Google Scholar 

  • Fravel, D. R., Marois, J. J., Lumsden, R. D., and Connick, Jr., W. J. 1985. Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75:774–777.

    Article  Google Scholar 

  • Fukui, S., and Tanaka, A. 1982. Immobilized microbial cells. Annu. Rev. Microbiol. 36:145–172.

    Article  CAS  Google Scholar 

  • Garrett, R. E., Mehlschau, J. J., Smith, N. E., and Redenbaugh, M. K. 1991. Gel encapsulation of tomato seeds. Appl. Eng. Agric. 7:25–31.

    Google Scholar 

  • Garrett, R. E., Shafii, S., and Upadhyaya, S. K. 1994. Encapsulation of seeds in gel by impact. Appl. Eng. Agric. 10:183–187. (Presented as ASAE paper No. 92-1073.)

    Google Scholar 

  • Garrett, R. E., Smith, N. E., and Mehlschau, J. J. 1989. Apparatus and method for encapsulating seeds and the like. U.S. Patent #4, 806,357.

    Google Scholar 

  • Ghanti, K. S., Govindaraju, B., Venagopal, R. B., Rao, S. R., Kaviraj, C. P., and Jabeen, F. T. Z. 2004. High frequency shoot regeneration from Phyllanthus amarus Schum & Thom. Ind. J. Biotechnol. 3:103–107.

    CAS  Google Scholar 

  • Gilleta, F., Roisin, C., Fliniaux, M. A., Jacquin-Dubreuil, A., Barbotin, J. N., and Nava-Saucedo, J. E. 2000. Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin. Enzyme Microbial Technol. 26:229–234.

    Article  CAS  Google Scholar 

  • Godbey, W. T., Wu, K. K., and Mikos, A. G. 1999. Tracking the intracellular path of poly (ethylenimine)/DNA complexes for gene delivery. Proc. Natl Acad. Sci. USA 96:5177–5181.

    Article  CAS  Google Scholar 

  • Gonzalez, L. E., and Bashan, Y. 2000. Growth promotion of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 66:1527–1531.

    Article  CAS  Google Scholar 

  • Hackel, U., Klein, J., Megnet, R., and Wagner, F. 1975. Immobilization of microbial cells in polymeric matrices. Eur. J. Appl. Microbiol. 1:291–293.

    Article  Google Scholar 

  • Harris, F. W. 1975. Polymers containing pendent herbicide substituents. In: Proceedings of the International Controlled Release Pesticide Symposium, pp 334–382. Wright State University, Dayton, OH.

    Google Scholar 

  • Heiskanen, J. 1993. Favorable water and aeration conditions for growth media used in containerized tree seedling production: a review. Scand. J. For. Res. 8:337–358.

    Article  Google Scholar 

  • Herrett, R. A., and King, P. A. 1967. (to Union Carbide Corp.) Plant growth medium. U.S. Patent #3,336,129.

    Google Scholar 

  • Higashiyama, T., and Yamada, Y. 1991. Electrophoretic karyotyping and chromosomal gene mapping of Chlorella. Nucleic Acids Res. 19:6191–6195.

    Article  CAS  Google Scholar 

  • Honig, K., Riefler, M., and Kottke, I. 2000. Survey of Paxillus involutus (Batsch) Fr. inoculum and fruitbodies in a nursery by IGS-RFLPs and IGS sequences. Mycorrhiza 9:315–322.

    Article  CAS  Google Scholar 

  • Hosono, H., Uemura, I., Takumi, T., Nagamune, T., Yasuda, T., Kishimoto, M., Nagashima, H., Shimomura, N., Natori, M., and Endo, I. 1994. Effect of culture temperature shift on the cellular sugar accumulation of Chlorella vulgaris SO-26. J. Ferment. Bioeng. 78:235–240.

    Article  CAS  Google Scholar 

  • Ilangovan, K., Canizares-Villanueva, R. O., Gonzalez Moreno, S., and Voltolina, D. 1998. Effect of cadmium and zinc on respiration and photosynthesis in suspended and immobilized cultures of Chlorella vulgaris and Scenedesmus acutus. Bull. Environ. Contam. Toxicol. 60: 936–943.

    Article  CAS  Google Scholar 

  • Ingleby, K., Wilson, J., Mason, P. A., and Munro, R. C. 1994. Effects of mycorrhizal inoculation and fertilizer regime on emergence of Sitka spruce seedlings in bare-root nursery seedbeds . Can. J. For. Res. 24:618–623.

    Article  Google Scholar 

  • Jaizme-Vega, M. C., Esquivel Delamo, M., Tenoury Dominguez, P., and Rodriguez Romero, A. S. 2002. Effects of mycorhization on the development of two cultivars of micropropagated banana. InfoMusa 11:25–28.

    Google Scholar 

  • Jaizme-Vega, M. C., Rodrıguez-Romero, A. S., Marın Hermoso, C., and Declerck, S. 2003. Growth of micropropagated bananas colonized by root-organ culture produced arbuscular mycorrhizal fungi entrapped in Ca- alginate beads. Plant Soil 254:329–335.

    Article  CAS  Google Scholar 

  • Jolicoeur, M., Williams, R. D., Chavarie, C., Fortin, J. A., and Archambault, J. 1999. Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnol. Bioeng. 63:224–232.

    Article  CAS  Google Scholar 

  • Jones, M. D., Durall, D. M., and Cairney, J. W. G. 2003. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 157:399–422.

    Article  Google Scholar 

  • Jung, G., Mugnier, J., Diem, H. G., and Dommergues, Y. R. 1982. Polymer-entrapped rhizobium as an inoculant for legumes. Plant Soil 65:219–231.

    Article  CAS  Google Scholar 

  • Kaeppler, H., Gu, W., Somers, D., Rines, H., and Cockburn, A. 1990. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 9:415–418.

    Article  CAS  Google Scholar 

  • Kapulnik, Y., Sarig, S., Nur, I., Okon, Y., Kigel, J., and Henis, Y. 1981. Yield increases in summer cereal crops in Israeli fields inoculated with Azospirillum. Exp. Agric. 17:179–187.

    Article  CAS  Google Scholar 

  • Kenney, D. S. 1997. Commercialization of biological control products in the chemical pesticide world. In: Plant Growth-Promoting Rhizobacteria—Present Status and Future Prospects, ed. Ogoshi, A., Kobayashi, K., Homma, Y., Kodama, F., Kondo, N., Akino, S., pp 126–127. Sapporo, Japan: Faculty of Agriculture, Hokkaido University.

    Google Scholar 

  • Kersulec, A., Bazinet, C., Corbiueau, F., Come, D., Barbotin, J. N., Hervagault, J. F., and Thomas, D. 1993. Physiological behavior of encapsulated somatic embryos. Biomater. Artif. Cells Immobilization Biotechnol. 21:375–381.

    CAS  Google Scholar 

  • Kirk, P. M., Cannon, P. F., David, J. C., and Stalpers, J. 2001. Ainsworth and Bisby’s Dictionary of the Fungi, 9th edn. Wallingford, UK: CAB International.

    Google Scholar 

  • Kropacek, K., and Cudlin, p. 1989. Preparation of granulated mycorrhizal inoculum and its use in forest nurseries. In: Interrelationships Between Microorganisms and Plants in Soil, ed. V. Vančura, F. Kunc, pp. 177–182. Praha: Academia.

    Chapter  Google Scholar 

  • Kropp, B. R., and Langlois, C. G. 1990. Ectomycorrhizae in reforestation. Can. J. For. Res. 20:438–451.

    Article  Google Scholar 

  • Kydonieus, A. F., 1980. Controlled Release Technologies: Methods, Theory and Applications, vols I and II. Boca Raton, FL: CRC Press, Inc.

    Google Scholar 

  • Lebsky, V. K., Gonzalez-Bashan, L. E., and Bashan, Y. 2001. Ultrastructure of co-immobilization of the microalga Chlorella vulgaris with the plant growth-promoting bacterium Azospirillum brasilense and with its natural associative bacterium Phyllobacterium myrsinacearum in alginate beads. Can. J. Microbiol. 47:1–8.

    CAS  Google Scholar 

  • Le Tacon, F., Jung, G., Mugnier, J., Michelot, P., and Mauperin, C. 1985. Efficiency in a forest nursary of an ectomycorrhizal fungus inoculum produced in a fermentor and entrapped in polymeric gels. Can. J. Bot. 63:1664–1668.

    Article  Google Scholar 

  • Lisek, A., and Olikowska, T. 2004. In vitro storage of strawberry and raspberry in calcium-alginate beads at 48C. Plant Cell Tiss. Organ Cult. 78:167–172.

    Article  CAS  Google Scholar 

  • Liu, H., Kawabe, A., Matsunaga, S., Murakawa, T., Mizukami, A., Yanagisawa, M., Nagamori, E., Harashima, S., Kobayashi, A., and Fukui, K. 2004. Obtaining transgenic plants using the bio-active beads method. J. Plant Res. 117:95–99.

    Article  CAS  Google Scholar 

  • Manoj, K. R., Pooja, A., Kant, S. S., Jaiswal, V. S., and Jaiswal, U. 2009. The encapsulation technology in fruit plants—a review. Biotechnol. Adv. 27:671–679.

    Google Scholar 

  • Marassi, A. M., Scocchi, A., and Gonzalez, A. M. 2006. Plant regeneration from rice anthers cryopreserved by an encapsulation/dehydration technique. In Vitro Cell. Dev. Biol. Plant 42:31–36.

    Article  Google Scholar 

  • Mark, H. F., Bikales, N. M., Overberger, C. G., Menges, G., and Kroschwitz, J. I. 1985. In Encyclopedia of Polymer Science and Engineering, vol. 1, pp. 611–621. New York: Wiley-Interscience.

    Google Scholar 

  • Maruyama, E., Kinoshita, I., Ishii, K., Shigenaga, H., Ohba, K., and Saito, A. 1997. Alginate-encapsulation technology for the propagation of the tropical forest trees: Cedrela odorata L., Guazuma crinita Mart., Jacaranda mimosaefolia D. Don. Silvae Genet. 46:17–23.

    CAS  Google Scholar 

  • Mihal, I. 1999. Production of fruiting bodies of ectomycorrhizal fungi in spruce monocultures planted on former arable lands. Ekológia 18:125–133.

    Google Scholar 

  • Millet, E., and Feldman, M. 1984. Yield response of a common spring wheat cultivar to inoculation with Azospirillum brasilense at various levels of nitrogen fertilization. Plant Soil 80: 255–259.

    Article  Google Scholar 

  • Mizukami, A., Nagamori, E., Takakura, Y., Matsunaga, S., Kaneko, Y., Kajiyama, S., Harashima, S., Kobayashi, A., and Fukui, K. 2003. Transformation of yeast using calcium alginate microbeads with surface-immobilized chromosomal DNA. BioTechniques 35:734–740.

    CAS  Google Scholar 

  • Mortier, F., Le Tacon , F., and Garbaye, J. 1988. Effect of inoculum type and inoculation dose on ectomycorrhizal development, root necrosis and growth of Douglas fir seedlings inoculated with Laccaria laccata in a nursery. Ann. Sci. For. 45:301–310.

    Article  Google Scholar 

  • Moukadiri, O., Connor, J. E., and Cornejo, M. J. 1999. Phenotypic characterization of the progenies of rice plants derived from cryopreserved calli. Plant Cell Rep. 18:625–632.

    Article  CAS  Google Scholar 

  • Moutoglis, P., and Béland, M. 2001. PTB’s research report. In: Proceedings of the ICOM-3 Conference, Section P1, p. 26. Adelaide, South Australia, 8–13 July, 2001.

    Google Scholar 

  • Muguier, J., and Jung, G.. 1985. Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl. Environ. Microbiol. 50:108–114.

    Google Scholar 

  • Mukunthakumar, S., and Mathur, J., 1992. Artificial seed production in the male bamboo Dendrocalamus strictus L. Plant Sci. Limerick 87:109–113.

    Article  Google Scholar 

  • Nahakpam, S., Singh, P., and Shah, K. 2008. Effect of calcium on immobilization of rice (Oryza sativa L.) peroxidase for bioassays in sodium alginate and agarose gel. Biotechnol. Bioprocess Eng. 13:632–638.

    Article  CAS  Google Scholar 

  • Nipoti, P., Manzali, D., Gennari, S., D’Ercole, N., and Rivas, F. 1990. Activity of Trichoderma harzianum Rifai on the germination of asparagus seeds: I. Seed treatments. Acta Hort. 271: 403–407.

    Google Scholar 

  • Nussinovitch, A. 1997. Hydrocolloid Applications: Gum Technology in the Food and Other Industries. London and Weinheim: Blackie Academic & Professional.

    Book  Google Scholar 

  • Oh-Hama, T., and Miyachi, S. 1992. Chlorella. In: Microalgal Biotechnology, ed. M. A. Borowitzka, L. J. Borowitzka, pp. 3–26. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Okon, Y. 1985. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3: 223–228.

    Article  Google Scholar 

  • Oleskog, G., Grip, H., Bergsten, U., and Sahlen, K. 2000. Seedling emergence of Pinus sylvestris in characterized seedbed substrates under different moisture conditions. Can. J. For. Res. 30:1766–1777.

    Article  Google Scholar 

  • Ostonen, I., and Lohmus, K. 2003. Proportion of fungal mantle, cortex and stele of ectomycorrhizas in Picea abies (L.) Karst. in different soils and site conditions. Plant Soil 257: 435–442.

    Article  CAS  Google Scholar 

  • Oswald, W. J. 1992. Microalgae and wastewater treatment. In: Microalgal Biotechnology, ed. M. A. Borowitzka, L. J. Borowitzka, pp. 305–328. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Ouchi, S. 2001. Characteristics of superabsorbent polymer (SAP)-mixed soil. In: Gels Handbook, vol. 3: Applications, ed. Y. Osada, K. Kajiwara, pp. 261–275. San Diego and San Francisco: Academic.

    Chapter  Google Scholar 

  • Parlade, J., Alvarez , I. F., and Pera , J. 1999. Coinoculation of containerized Douglas-fir (Pseudotsuga menziesii) and maritime pine (Pinus pinaster) seedlings with the ectomycorrhizal fungi Laccaria bicolor and Rhizopogon spp. Mycorrhiza 8:189–195.

    Article  Google Scholar 

  • Pattnaik, S., and Chand, P. K. 2000. Morphogenic response of the alginate encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell Tiss. Organ Cult. 60:177–185.

    Article  Google Scholar 

  • Paul, D. R. 1976. Controlled release polymeric formulations. In: American Chemical Society Symposium Series No. 33, p. 2. Washington, D.C: American Chemical Society.

    Google Scholar 

  • Rakoczy-Trojanowaka, M. 2002. Alternative methods of plant transformation—a short review. Cell Mol. Biol. Lett. 7:849–858.

    Google Scholar 

  • Ramazanov, A., and Ramazanov. Z. 2006. Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol. Res. 54:255–259.

    Article  CAS  Google Scholar 

  • Ren, N., and Timko, M. p. 2001. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571.

    CAS  Google Scholar 

  • Repac, I. 2007. Ectomycorrhiza formation and growth of Picea abies seedlings inoculated with alginate-bead fungal inoculum. Forestry 80:517–530.

    Article  Google Scholar 

  • Reynders, L., and Vlassak, K. 1982. Use of Azospirillum brasilense as biofertilizer in intensive wheat cropping. Plant Soil 66:217–223.

    Article  Google Scholar 

  • Richmond, A. 1990. Handbook of Microalgal Mass Culture. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rincon, A., Parlade, J., and Pera, J. 2005. Effects of ectomycorrhizal inoculation and the type of substrate on mycorrhization, growth and nutrition of containerized Pinus pinea L. seedlings produced in a commercial nursery. Ann. For. Sci. 62:817–822.

    Article  Google Scholar 

  • Rizzo, W. B., Schulman, J. D., and Mukherjee, A. B. 1983. Liposome- mediated transfer of simian virus 40 DNA and minichromosome into mammalian cells. J. Gen. Virol. 64:911–919.

    Article  CAS  Google Scholar 

  • Rodicio, M. R., and Chater, K. F. 1982. Small DNA-free liposomes stimulate transfection of streptomyces protoplasts. J. Bacteriol. 151:1078–1085.

    CAS  Google Scholar 

  • Romaine, C. P., and Schlagnhaufer, B. 1992. Characteristics of a hydrated alginate-based delivery system for cultivation of the button mushroom. Appl. Environ. Microbiol. 58:3060–3066.

    CAS  Google Scholar 

  • Sarig, S., Kapulnik, Y., Nur, I., and Okon, Y. 1984. Response of non-irrigated Sorghum bicolor to Azospirillum inoculation. Exp. Agric. 20:59–66.

    Article  Google Scholar 

  • Seki, M., Ohzora, C., Takeda, M., and Furusaki, S. 1997. Taxol (paclitaxel) production using free and immobilized cells of Taxus cuspidata. Biotechnol. Bioeng. 53:214–219.

    Article  CAS  Google Scholar 

  • Singh, A. K., Sharma, M., Varshney, R., Agarwal, S. S., and Bansal, K. C. 2006a. Plant regeneration from alginate-encapsulated shoot tips of Phyllanthus amarus Schum and Thonn, a medicinally important plant species. In Vitro Cell. Dev. Biol. Plant 42:109–113.

    CAS  Google Scholar 

  • Singh, A. K., Varshney, R., Sharma, M., Agarwal, S. S., and Bansal, K. C. 2006b. Regeneration of plants from alginate-encapsulated shoot tips of Withania somnifera (L.) Dunal, a medicinally important plant species. J. Plant Physiol. 163:220–223.

    Article  CAS  Google Scholar 

  • Smith, R. L., Schank, S. C., Milam, J. R., and Baltensperger, A. A. 1984. Responses of Sorghum and Pennisetum species to the N2-fixing bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 47:1331–1336.

    CAS  Google Scholar 

  • Sone, T., Nagamori, E., Ikeuchi, T., Mizukami, A., Takakura, Y., Kajiyama, S., Fukusaki, E., Harashima, S., Kobayashi, A., and Fukui, K. 2002. A novel gene delivery system in plant with calcium alginate micro-beads. J. Biosci. Bioeng. 94:87–91.

    CAS  Google Scholar 

  • Stamets, p. 2000. Growing Gourmet and Medical Mushrooms, 3rd ed. Berkeley CA: Ten Speed Press.

    Google Scholar 

  • Suryakusuma, H., and Jun, H. W. 1984. Encapsulated hydrophilic polymer beads containing indomethacin as controlled release drug delivery systems. J. Pharm. Pharmacol. 36:497–501.

    Article  CAS  Google Scholar 

  • Suvarnalatha, G., Chand, N., Ravishankar, G. A., and Venkataraman, L. V. 1993. Computer-aided modeling and optimization for capsaicinoid production by immobilized Capsicum frutescens cells. Enzyme Microb. Technol. 15:710–715.

    Article  CAS  Google Scholar 

  • Tammi, H., Timonen, S., and Sen, R. 2001. Spatiotemporal colonization of Scots pine roots by introduced and indigenous ectomycorrhizal fungi in forest humus and nursery Sphagnum peat microcosms. Can. J. For. Res. 31:746–756.

    Article  Google Scholar 

  • Thompson, J. A. 1980. Production and quality control of legume inoculants. In: Methods of Evaluating Biological Nitrogen Fixation, ed. F. J. Bergersen, pp. 489–533. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Towill, L. E., and Walters, C. 2000. Cryopreservation of pollen. In: Cryopreservation of Tropical Germplasm. Current Research Progress and Application, ed. F. Engelmann, H. Takagi, pp. 115–129. Ibarak, Japan: JIRCAS/IPGRI.

    Google Scholar 

  • Trivedi, P., and Pandey, A. 2008. Recovery of plant growth-promoting rhizobacteria from sodium alginate beads after 3 years following storage at 4°C. J. Ind. Microbiol. Biotechnol. 35: 205–209.

    Article  CAS  Google Scholar 

  • Van der Heijden , E. W., and Kuyper, T. W. 2001. Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant Soil 230:161–174.

    Article  Google Scholar 

  • Vanek, T., Valterova, I., Pospisilova, R., and Vaisar, T. 1994. The effect of immobilization on the course of biotransformation reactions by plant cells. Biotechnol. Lett. 8:289–294.

    CAS  Google Scholar 

  • Vanek, T., Valterova, I., Vankova, R., and Vaisar, T. 1999. Biotransformation of (2)-linomene using Solanum aviculare and Dioscorea deltoidea immobilized plant cells. Biotechnol. Lett. 21: 625–628.

    Article  CAS  Google Scholar 

  • Verpoorte, R., and Dihal, P. p. 1987. Medicinal plants of Surinam-IV. Antimicrobial activity of some medicinal plants. J. Ethnopharmacol. 21:315–318.

    Article  CAS  Google Scholar 

  • Verpoorte, R., van der Heijden, R., ten Hoopen, H. J. G., and Memelink, J. 1999. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol. Lett. 21:467–469.

    Article  CAS  Google Scholar 

  • Walker, H. L. 1981. Granular formulation of Alternaria macro-spora for control of spurred anoda (Anoda cristata). Weed Sci. 29:342–345.

    Google Scholar 

  • Walker, H. L., and Connick, W.J., Jr. 1983. Sodium alginate for production and formulation of mycoherbicides. Weed Sci. 31:333–338.

    Google Scholar 

  • Wang, B., and Qiu, Y. L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363.

    Article  CAS  Google Scholar 

  • Zhang, Y. X., Wang, J. H., Bian, H. W., and Zhu, M. 2001. Pregrowth-desiccation: a simple and efficient procedure for the cryopreservation of rice (Oryza sativa L.) embryogenic suspension cells. CryoLetters 22:221–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Nussinovitch .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nussinovitch, A. (2010). Beads and Special Applications of Polymers for Agricultural Uses. In: Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6618-6_9

Download citation

Publish with us

Policies and ethics