Advertisement

Methods and Mathematical Models for the Drying of Polymeric Beads

Chapter

Abstract

Water-soluble polymer beads can be dried for a variety of purposes (described in full in Chapter 6). In general, after drying, the texture is porous. In many cases, the bead is capable of retaining its integrity even after immersion in water for long periods. In addition, and in contrast to wet gel beads, porosity facilitates the liberation of gases during fermentation without harming the dried bead’s integrity. This chapter covers methods for drying polymeric beads, including air-drying, fluidized-bed and microwave-assisted fluidized-bed drying, and freeze-drying, and freeze-dried biological products are fully described. Sections also include drying of dosage forms made of drug dispersed in a polymer, mathematical and numerical models to analyze the drying, and a discussion of special cases such as drying a polymer bead with shrinkage.

Keywords

Rhodococcus Erythropolis Ethylene Vinyl Acetate Ethylene Vinyl Acetate Spherical Bead Ethylene Vinyl Acetate Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agnely, F., Bettini, R., Besnard, M., Colombo, P., and Couarraze, G. 2004. Preparation and characterization of chitosan based micro networks: transposition to a prilling process. J. Appl. Polym. Sci. 93:2550–2558.CrossRefGoogle Scholar
  2. Ahmad, S. S., Morgan, M. T., and Okos, M. R. 2001. Effects of microwave drying, checking and mechanical strength of baked biscuits. J. Food Eng. 50:63–75.CrossRefGoogle Scholar
  3. Alloue, W. A. M., Destain, J., El Medjoub, T., Ghalfi, H., Kabran, P., and Thonart, P. 2008. Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques. Appl. Biochem. Biotechnol. 150:51–63.CrossRefGoogle Scholar
  4. Bakhouya, A., Bouzon, J., and Vergnaud, J. M. 1991. Modelling the process of diffusion-evaporation of a liquid from a polymer sphere by considering the shrinkage of the sphere. Plast. Rubber Proc. Appl. 15:263–271.Google Scholar
  5. Bashan, Y. 1986. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol. 51:1089–1098.Google Scholar
  6. Blandin, H. P., David, J. P., Illien, M., Malizewicz, M., and Vergnaud, J. M. 1987a. Modeling of the drying process of coatings with various layers. J. Coatings Technol. 59:27–32.Google Scholar
  7. Blandin, H. P., David, J. C., and Vergnaud, J. M. 1987b. Modelling of drying of coatings: effect of the thickness, temperature and concentration of solvent. Prog. Org. Coatings 15: 163–172.CrossRefGoogle Scholar
  8. Bouzon, J., and Vergnaud, J. M. 1991. Modelling of the process of desorption of liquid by polymer bead, by considering diffusion and shrinkage. Eur. Polymer J. 27:115–120.CrossRefGoogle Scholar
  9. Cassidy, M. B., Lee, H., and Trevors, J. T. 1996. Environmental applications of immobilized microbial cells: a review. J. Ind. Microbiol. Biotechnol. 16:79–101.Google Scholar
  10. Cassidy, M. B., Mullineers, H., and Trevors, J. T. 1997. Mineralization of pentachlorophenol in a contaminated soil by Pseudomonas sp UG30 cells encapsulated in kappa-carrageenan. J. Ind. Microbiol. Biotechnol. 19:43–48.CrossRefGoogle Scholar
  11. Chen, G., Wang, W., and Mujumdar, A. S. 2001. Theoretical study of microwave heating patterns on batch fluidized bed drying of porous material. Chem. Eng. Sci. 56:6823–6835.CrossRefGoogle Scholar
  12. Crank, J. 1975. Diffusion in a plane sheet. In: The Mathematics of Diffusion, 2nd edn., pp. 44–68. New York: Oxford University Press.Google Scholar
  13. David, H., Bouzon, J., and Vergnaud, J. M. 1988. Absorption of anilin by EVA copolymers and desorption water. J. Control. Release 8:151–156.CrossRefGoogle Scholar
  14. David, H., Bouzon, J., and Vergnaud, J. M. 1989a. Controlled absorption and release of an active agent using EVAc beads—effect of various parameters. Eur. Polymer J. 25:1007–1011.CrossRefGoogle Scholar
  15. David, H., Bouzon, J., and Vergnaud, J. M. 1989b. Modelling of desorption of liquid from an EVA polymer device composed of a core and shell. Plast. Rubber Proc. Appl. 11:9–16.Google Scholar
  16. David, H., Bouzon, J., and Vergnaud, J. M. 1989c. Modelling of absorption and desorption of a liquid by a polymer device made of a core and shell. Eur. Polymer J. 25:89–94.CrossRefGoogle Scholar
  17. David, H., Bouzon, J., and Vergnaud, J. M. 1989d. Modelling of matter transfer with a polymer device made of a core and shell. Effect of the capacity of absorption by the silicone shell. Eur. Polymer J. 25:939–945.CrossRefGoogle Scholar
  18. Drouzas, A. E., Tsami, E., and Saravacos, G. D. 1999. Microwave/vacuum drying of model fruit gels. J. Food Eng. 39:117–122.CrossRefGoogle Scholar
  19. Elbert, G., Tolaba, M. P., Aguerre, R. J., Suarez, C. 2001. A diffusion model with a moisture dependent diffusion coefficient for parboiled rice. Drying Technol. 19:155–166.CrossRefGoogle Scholar
  20. Fellows, P. J. 2002. Freeze drying and freeze concentration. In: Food Processing Technology, Principles and Practice, 2nd edn., pp. 441–451. Boca Raton and Boston: CRC Press.Google Scholar
  21. Feng, H., and Tang, J. 1998. Microwave finish drying of diced apple slices in a spouted bed. J. Food Sci. 63:679–683.CrossRefGoogle Scholar
  22. Feng, H., Tang, J., and Cavalieri, R. P. 2002. Dielectric properties of dehydrated apples as affected by moisture and temperature. Trans. ASAE 45:129–135.Google Scholar
  23. Goksu, E. I., Sumnu, G., and Esin, A. 2005. Effect of microwave on fluidized bed drying of macaroni beads J. Food Eng. 66:463–468.CrossRefGoogle Scholar
  24. Hlinak, A. J., and Saleki-Gerhardt, A. 2000. An evaluation of fluid bed drying of aqueous granulations. Pharm. Dev. Technol. 5:11–17.CrossRefGoogle Scholar
  25. Hovmand, S. 1987. Fluidized bed drying. In: Handbook of Industrial Drying, ed. M. S. Arun, pp. 165–225. New York and Basel: Marcel Dekker, Inc.Google Scholar
  26. Israeli, E., Shaffer, B. T., and Lighthart, B. 1993. Production of freeze-dried Escherichia coli by trehalose upon exposure to environmental conditions. Cryobiology 30:510–523.CrossRefGoogle Scholar
  27. Jumah, R. Y., and Raghavan, G. S. V. 2001. Analysis of heat and mass transfer during combined microwave-convective spouted-bed drying. Drying Technol. 19(3,4):485–506.CrossRefGoogle Scholar
  28. Kabatov, A. I., Nikonov, B. A., Sventitskii, E. N., and Afanasi, E. S. 1991. Working out the means of recreating the biological activity of Saccharomyces cerevisiae yeast at sublimation drying. Biotekhnologiya 1:45–46.Google Scholar
  29. Karel, M. 1974. Fundamentals of dehydration processes. In: Advance in Preconcentration and Dehydration, ed. A. Spicer, pp. 45–94. London: Applied Science.Google Scholar
  30. Keey, R. B. 1972. In: Drying, Principles and Practice, pp. 64, 191. Oxford: Pergamon Press.Google Scholar
  31. Khatir, Y., Bouzon, J., and Vergnaud, J. M. 1986. Liquid sorption by rubber sheets and evaporation. Models and experiments. J. Polymer Test. 6:253–260.CrossRefGoogle Scholar
  32. Khatir, Y., Bouzon, J., and Vergnaud, J. M. 1987. Non-destructive testing of rubber for the sorption and desorption. Evaporation of liquids by modelling (cylinder of finite length). J. Polymer Eng. 7:149–168.Google Scholar
  33. Laghoueg-Derriche, N., and Vergnaud, J. M. 1991a. Drying of dosage forms prepared by a humidity technique using a programmed temperature system. Int. J. Pharm. 71: 229–236.CrossRefGoogle Scholar
  34. Laghoueg-Derriche, N., and Vergnaud, J. M. 1991b. Modeling the process of drying of dosage forms made of drug dispersed in a polymer. Int. J. Pharm. 67:51–57.CrossRefGoogle Scholar
  35. Laghoueg-Derriche, N., Bouzon, J., and Vergnaud, J. M. 1991. Effect of temperature of the drying process of dosage forms prepared by a humidity technique. Int. J. Pharm. 67:163–168.CrossRefGoogle Scholar
  36. Liapis, A. I. 1987. Freeze drying. In: Handbook of Industrial Drying, ed. A. S. Mujumdar, pp. 295–326. New York and Basel: Marcel Dekker, Inc.Google Scholar
  37. McCabe, W. L., Smith, J. C., and Harriott, P. 2005. Heat transfer by conduction. In: Unit Operations of Chemical Engineering, 7th edn., pp. 299–324. New York: McGraw-Hill, Inc.Google Scholar
  38. Mouffok, B., Bouzon, J., and Vergnaud, J. M. 1991. Modeling the process of evaporation of hydrocarbons out of polymers by considering diffusion-evaporation and shrinkage. J. Comput. Polym. Sci. 1:56–62.Google Scholar
  39. Mujumdar, A. S., and Devahastin, S. 2000. Fluidized bed drying technology. In: Mujumdar’s Practical Guide to Industrial Drying, ed. S. Devahastin, pp. 75–98. Canada: Exergex Corporation.Google Scholar
  40. Ni, H., Datta, A. K., and Torrance, K. E. 1999. Moisture transport in intensive microwave heating of biomaterials: a multiphase porous media model. Int. J. Heat Mass Transfer 42:1501–1512.CrossRefGoogle Scholar
  41. Nochos, A., Douroumis, D., and Bouropoulos, N. 2008. In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr. Polym. 74:451–457.CrossRefGoogle Scholar
  42. Oetjen, G. W. 1999. Freeze-Drying. Weinheim and New York: Wiley-Vch Verlag GmbH.CrossRefGoogle Scholar
  43. Paul, E., Fages, J., Blanc, P., Goma, G., and Pareilleux, A. 1993. Survival of alginate-entrapped cells of Azospirillum lipoferum during rehydration and storage in relation to water properties. Appl. Microbiol. Biotechnol. 40:34–39.CrossRefGoogle Scholar
  44. Peleg, M., and Bagely, E. B. 1983. Physical properties of foods. Wesport, CT: Avi Publishing Company, Inc.Google Scholar
  45. Pitombo, R. N. M., Spring, C., Passos, R. F., Tonato, M., and Vitalo, M. 1994. Effect of moisture content on the interface activity of freeze-dried S. cerevisiae. Cryobiology 31:383–392.CrossRefGoogle Scholar
  46. Schoof, H., Apel, J., Heschel, I., and Rau, G. 1999. Influence of the freezing process on the porous structure of freeze-dried collagen sponges. In: Freeze-Drying, ed. G. W. Oetjen, pp. 232–233. Weinheim and New York: Wiley-Vch Verlag GmbH.Google Scholar
  47. Senoune, A., Bouzon, J., and Vergnaud, J. M. 1990. Modeling the process of liquid absorption by a polymer sphere, by considering diffusion and subsequent swelling. J. Polymer Eng. 9:213–236.Google Scholar
  48. Singh, P. R., and Heldman, D. R. 2001. Introduction to Food Engineering. 3rd edn. London & San Diego: Academic Press.Google Scholar
  49. Talukder, R., and Fassihi, R. 2004. Gastroretentive delivery systems: hollow beads. Drug Dev. Ind. Pharmacy 30:405–412.CrossRefGoogle Scholar
  50. Tatemoto, Y., Bando, Y., Yasuda, K., Senda, Y., and Nakamura, M. 2001. Effect of fluidizing particle on drying characteristics of porous material in fluidized bed. Drying Technol. 19:1305–1318.CrossRefGoogle Scholar
  51. Tateshita, K., Sugawara, S., Imai, T., and Otagiri, M. 1993. Preparation and evaluation of controlled-release formulation of a nifedipine using alginate gel beads. Biol. Pharm. Bull. 16:420–424.CrossRefGoogle Scholar
  52. Tavakol, M., Vasheghani-Farahani, E., Dolatabadi-Farahani, T., and Hashemi-Najafabadi, S. 2009. Sulfasalazine release from alginate-N,O-carboxymethyl chitosan gel beads coated by chitosan. Carbohyd. Polymers 77:326–330.CrossRefGoogle Scholar
  53. Trevors, J. T., Lee, H., Wolters, A. C., and Van Elsas, J. D. 1993. Survival of alginate-encapsulated Pseudomonas fluorescens cells in soil. Appl. Environ. Microbiol. 39:637–643.Google Scholar
  54. Treybal, R. E. 1981. In: Mass-Transfer Operations, 3rd edn, p. 93. Tokyo: McGraw-Hill, Inc.Google Scholar
  55. Vancov, T., Jury, K., Rice, N. F., Van Zwieten, L., and Morris, S. 2007. Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads. J. Appl. Microbiol. 102:212–220.CrossRefGoogle Scholar
  56. van Elsas, J. D., Trevors, J. T., Jain, D., Wolters, A. C., Heijnen, C. E., and van Overbeek, L. S. 1992. Survival of, and root colonization by, alginate-encapsulated Pseudomonas fluorescens cells following introduction into soil. Biol. Fert. Soil 14:14–22.CrossRefGoogle Scholar
  57. Vergnaud, J. M. 1983. Scientific aspects of plasticizer migration from plasticized PVC into liquids. Polymer Plast. Technol. Eng. 20:122.CrossRefGoogle Scholar
  58. Vergnaud, J. M. 1992. Drying of a polymer sphere with shrinkage. In: Drying of Polymeric and Solid Materials, Modeling and Industrial Applications, pp. 319–332. London, Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
  59. Wang, W., Thorat, B. H., Chen, G., and Mujumdar, A. S. 2002. Simulation of fluidized-bed drying of carrot with microwave heating. Drying Technol. 20:1855–1867.CrossRefGoogle Scholar
  60. Wang, Z. H., and Chen, G. 2000. Heat and mass transfer in batch fluidized-bed drying of porous particles. Chem. Eng. Sci. 55:1857–1869.CrossRefGoogle Scholar
  61. Weir, S. C., Providenti, M. A., Lee, H., and Trevors, J. T. 1996. Effect of alginate encapsulation and selected disinfectants on survival of and phenathrene mineralization by Pseudomonas sp. UG14Lr in creosote-containing soils. J. Ind. Microbiol. 16:62–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Biochemistry, Food Science and Human Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations