Skip to main content

Beads for Environmental Applications

  • Chapter
  • First Online:
  • 1753 Accesses

Abstract

This chapter focuses on the use of beads to immobilize microorganisms for pollutant biodegradation. Special emphasis is placed on chemically contaminated water, soil, and air. Water treatments are reviewed, and wastewater treatment by anaerobic fixed- bed reactor or using immobilized microorganisms is discussed, along with the more specific examples of arsenic removal from water, chitosan and the removal of heavy metal ions, and water denitrification. The chapter lists the advantages of using encapsulated bacterial cells for soil applications, describes the preparation of such beads, and gives information on the protection of encapsulated cells from environmental stress. Another topic is the use of beads to protect against toxicity, and the related issues of soil treatments, agrochemicals, controlled release of pesticides into soils, and sustained release of fungicide. Because these beads are introduced into soils, a special section is devoted to release from these beads in the soil environment. In addition to discussing the advantages of beads for environmental applications, the chapter tries to account for the limitations of such technologies, such as the problem of substrate diffusion into immobilized preparations. Other covered issues include air pollution and sampling, and the determination of trace contaminants in air by concentration on porous polymer beads. Finally, the chapter discusses miscellaneous applications such as biodegradation and removal by microalgae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aksu, Z., Sag, Y., and Kutsal, T. 1992. The biosorption of copper (II) by Chlorella vulgaris and Zoogloea ramigera. Environ. Technol. 13:579–586.

    CAS  Google Scholar 

  • Altshuller, A. P. 1963. Gas chromatography in air pollution studies. J. Gas Chromatogr. 1:6.

    CAS  Google Scholar 

  • Appelo, C. A. J., Weiden, V. D., Tournassat, C., and Charlet, L. 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36:3096–3103.

    CAS  Google Scholar 

  • Bahadir, M. 1987. Safe formulations of agrochemicals. Chemosphere 16:615–621.

    CAS  Google Scholar 

  • Bashan, Y., and Holguin, G. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30:1225–1228.

    CAS  Google Scholar 

  • Bjorge, C., Brunborg, G., Wiger, R., Holme, J. A., Scholz, T., Dybing, E., and Soderlund, E. J. 1996. A comparative study of chemically induced DNA damage in isolated human and rat testicular cells. Reprod. Toxicol. 10:509–519.

    CAS  Google Scholar 

  • Bodmeier, R., Oh, K. H., and Pramar, Y. 1989. Preparation and evaluation of drug-containing chitosan beads. Drug Dev. Ind. Pharm. 15:1475–1494.

    CAS  Google Scholar 

  • Boeden, H. F., Pommerening, K., Becker, M., Rupprich, C., and Holtzhauer, M. 1991. Bead cellulose derivatives as supports for immobilization and chromatographic purification and proteins. J. Chromatogr. 552:389–414.

    CAS  Google Scholar 

  • Bonnin, D., and Tampa, F. 2000. Method of removal of arsenic species from an aqueous medium using modified zeolite minerals. U.S. Patent #006042731A.

    Google Scholar 

  • Cao, Y., Huang, L., Chan, J., Liang, J., Long, S., and Lu, Y. 2005. Development of controlled release formulation based on a starch matrix system. Int. J. Pharm. 298:108–116.

    CAS  Google Scholar 

  • Cereser, C., Boget, S., Paravaz, P., and Revol, A. 2001. Thiram-induced cytotoxicity is accompanied by a rapid and drastic oxidation of reduced glutathione with consecutive lipid peroxidation and cell death. Toxicology 163:153–162.

    CAS  Google Scholar 

  • Cespedes, F. F., Sanchez, M. V., Garcia, S. P., and Perez, M. F. 2007. Modifying sorbents in controlled release formulations to prevent herbicides pollution. Chemosphere 69: 785–794.

    Google Scholar 

  • Chen, C. J., Chiou, H. Y., Huang, W. I., Chen, S. Y., Hsueh, Y. M., Tseng, C. H., Lin, L. J., Shyu, M. P., and Lai, M. S. 1997. Systemic non-carcinogenic effects and developmental toxicity of inorganic arsenic. In: Arsenic Exposure and Health Effects, ed. C. O. Abernathy, R. L. Calderon, W. R. Chappell, p. 124. London: Chapman & Hall.

    Google Scholar 

  • Chen, C. Y, Chang, T. H., Kuo, J. T., Chen, Y. F., and Chung, Y. C. 2008. Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater. Bioresource Technol. 99:7487–7494.

    CAS  Google Scholar 

  • Chen, C. Y., Chen, C. C., and Chung, Y. C. 2007. Removal of phthalate esters by a cyclodextrin-linked chitosan bead. Bioresource Technol. 98:2578–2583.

    CAS  Google Scholar 

  • Chen, C.Y., and Chung, Y.C. 2007. Removal of phthalate esters from aqueous solution by molybdate impregnated chitosan beads. Environ. Eng. Sci. 24:834–841.

    CAS  Google Scholar 

  • Choi, S. B., and Park, J. K. 2009. Metal recovery by aged beads prepared using cell-suspension from the waste of beer fermentation broth. Korean J. Chem. Eng. 26:457–461.

    CAS  Google Scholar 

  • Cohen, S. Z. 1996. Pesticides in ground water in the United States: monitoring, modeling, and risks from the US perspective. J. Environ. Sci. Health B-Pestic. 31:345–352.

    CAS  Google Scholar 

  • Coleman, J. P., and Monzyk, B. F. 1988. Oxidative dissolution of gallium arsenide and separation of gallium from arsenic. U.S. Patent #4,759,917.

    Google Scholar 

  • Cremer, E. 1967. New Selective Detectors in Gas Chromatography. In: Advances in Gas Chromatography, pp. 52–56. Evanston, IL: Preston Technical Abstracts.

    Google Scholar 

  • Cropper, F. R., and Kaminsky, S. 1963. Determination of toxic organic compounds in admixture by gas chromatography. Anal. Chem. 35:735–743.

    CAS  Google Scholar 

  • Dalvi, R. R., and Deoras, D. P. 1986. Metabolism of a dithiocarbamate fungicide thiram to carbon disulfide in the rat and its hepatotoxic implications. Acta Pharmacol. Toxicol. 58:38–42.

    CAS  Google Scholar 

  • Dambies, L., Guibal, E., and Roze, A. 2000. Arsenic(V) sorption on molybdate-impregnated chitosan beads. Colloids Surf. A: Physicochem. Eng. Aspects 170:19–31.

    CAS  Google Scholar 

  • Dambies, L., Vincent, T., and Guibal, E. 2002. Treatment of arsenic containing solutions using chitosan derivatives: uptake mechanism and sorption performances. Water Res. 36:3699–3710.

    CAS  Google Scholar 

  • de-Bashan, L. E., Moreno, M., Hernandez, J.-P., and Bashan, Y. 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res. 36:2941–2948.

    CAS  Google Scholar 

  • Demarco, M. J., Sengupta, A. K., and Greenleaf, J. E. 2003. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res. 37:164–176.

    CAS  Google Scholar 

  • Deschamps, E., Ciminelli, V. S. T., and Holl, W. H. 2005. Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. Water Res. 39:5212–5220.

    CAS  Google Scholar 

  • Dinesh, M., and Charles, U. P. J. 2007. Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. 142:1–53.

    Google Scholar 

  • Dinesh, M., Charles, U. P. J., Mark, B., Fran, S., Ben, Y., Javeed, M., Philip, H. S., Maria, F. A., Vicente, G., and Henry, G. 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 310:57–73.

    Google Scholar 

  • Dwyer, D. F., Krumme, M. L., Boyd, S. A., and Tiedje, J. M. 1986. Kinetics of phenol biodegradation by an immobilized methanogenic consortium. Appl. Environ. Microbiol. 51:345–351.

    Google Scholar 

  • Elizalde-González, M. P., Mattusch, J., Einicke, W. D., and Wennrich, R. 2001. Sorption on natural solids for arsenic removal. Chem. Eng. J. 81:187–195.

    Google Scholar 

  • Fetter, G., Tichit, D., Massiani, P., Dutatre, R., and Figueras, F. 1994. Preparation and characterization of montmorillonites pillared by cationic silicon species. Clays Clay Miner. 42:161–169.

    CAS  Google Scholar 

  • Fugetsu, B., Satoh, S., Iles, A., Kazuhiko Tanaka, K., Nishi, N., and Watari, F. 2004. Encapsulation of multi-walled carbon nanotubes (MWCNTs) in Ba2+–alginate to form coated micro-beads and their application to the pre-concentration/elimination of dibenzo-p-dioxin, dibenzofuran, and biphenyl from contaminated water. Analyst 129:565–566.

    CAS  Google Scholar 

  • Fuhrman, H. G., Tjell, J. C., and McConchie, D. 2004. Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 38:2428–2434.

    Google Scholar 

  • Gerstl, Z. 1991. Behaviour of organic agrochemicals in irrigated soils. In: Chemistry, Agriculture and the Environment, ed. M. L. Richardson, pp. 332–369. Cambridge, UK: The Royal Society of Chemistry.

    Google Scholar 

  • Gerstl, Z., Nasser, A., and Mingelgrin, U. 1998. Controlled release of pesticides into soils from clay-polymer formulations. J. Agric. Food Chem. 46:3797–3802.

    CAS  Google Scholar 

  • Gish, T. G., Shirmohammadi, A., and Wienhold, B. J. 1994. Field-scale mobility and persistence of commercial and starch-encapsulated atrazine and alachlor. J. Environ. Qual. 23:355–359.

    CAS  Google Scholar 

  • Gonzalez, L. E., and Bashan, Y. 2000. Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant growth promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 66:1527–1531.

    CAS  Google Scholar 

  • Gonzalez, L. E., Canizares, R. O., and Baena, S. 1997. Efficiency of ammonia and phosphorus removal from Colombian agroindustrial wastewater by the microalgae Chorella vulgaris and Scenedesmus dimorphus. Bioresource Technol. 60:259–262.

    CAS  Google Scholar 

  • Gonzalez-Bashan, L. E., Lebsky, V. K., Hernandez, J. P., Bustillos, J. J., and Bashan, Y. 2000. Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Can. J. Microbiol. 46: 653–659.

    CAS  Google Scholar 

  • Gonzalez-Paradas, E., Fernandez-Perez, M., Villafranca-Sanchez, M., and Flores-Cespedes, F. 1999. Mobility of imidacloprid from alginate bentonite controlled-release formulations in green house soils. Pestic. Sci. 55:1109–1115.

    Google Scholar 

  • Guo, X., and Chen, F. 2005. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ. Sci. Technol. 39:6808–6818.

    CAS  Google Scholar 

  • Guyot, C. 1994. Strategies to minimize the pollution of water by pesticides. In: Pesticides in Ground Water and Surface Water, Chemistry of Plant Protection, ed. H. Borner, vol. 9. Berlin: Springer.

    Google Scholar 

  • Ha, J., Engler, C. R., and Wild, J. R. 2009. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresource Technol. 100:1138–1142.

    CAS  Google Scholar 

  • Han, B., Runnells, T., Zimbron, J., and Wickramasinghe, R. 2002. Arsenic removal from drinking water by flocculation and microfiltration. Desalination 145:293–298.

    CAS  Google Scholar 

  • Hemavathi, E., and Rahiman, M. A. 1993. Toxicological effects of ziram, thiram, and dithane M-45 assessed by sperm shape abnormalities in mice. J. Toxicol. Environ. Health 38:393–398.

    CAS  Google Scholar 

  • Hering, J. G., Chen, P.-Y., Wilkie, J. A., and Elimelech, M. 1997. Arsenic removal from drinking water by coagulation. J. Environ. Eng. 123:800–807.

    CAS  Google Scholar 

  • Isensee, A. R., and Sadeghi, A. M. 1995. Long-term effect of tillage and rainfall on herbicide leaching to shallow groundwater. Chemosphere 30:671–685.

    CAS  Google Scholar 

  • Isiklan, N. 2007. Controlled release study of carbaryl insecticide from calcium alginate and nickel alginate hydrogel beads. J. Appl. Polym. Sci. 105:718–725.

    CAS  Google Scholar 

  • Iza, J. 1991. Fluidized bed reactors for anaerobic wastewater treatment. Water Sci. Technol. 24:109–132.

    CAS  Google Scholar 

  • Jeltes, R. 1969. Sampling of nonpolar air contaminants on porapak porous polymer beads. Atmos. Environ. 3:587–588.

    CAS  Google Scholar 

  • Jetten, M. S. M., Wagner, M., Fuerst, J., Van Loosdrecht, M. C. M., Kuenen, J. G., and Strous, M. 2001. Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Curr. Opin. Biotechnol. 12:283–288.

    CAS  Google Scholar 

  • Jha, I. N., Iyengar, L., and Rao, A. V. S. 1988. Removal of cadmium using chitosan. J. Environ. Eng. 114:962–974.

    CAS  Google Scholar 

  • Kaiser, J. 2000. Just how bad is dioxin? Science 288:1941–1944.

    CAS  Google Scholar 

  • Karns, J. S., Ahrens, E. H., Davey, R. B., and Shelton, D. R. 1995. Management of microbial processes in cattle-dipping vats containing coumaphos. Pestic. Sci. 45:13–19.

    CAS  Google Scholar 

  • Kartal, S. N., and Imamura, Y. 2005. Removal of copper, chromium, and arsenic from CCA treated wood onto chitin and chitosan. Bioresource Technol. 96:389–392.

    CAS  Google Scholar 

  • Kawase, M. 1993. Wastewater treatment by anaerobic fixed-bed reactor. In: Industrial Application of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 355–376. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Keweloh, H., Heipieper, H. J., and Rehm, H. J. 1989. Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl. Microbiol. Biotechnol. 31: 383–389.

    CAS  Google Scholar 

  • Kim, J. W., Rainina, E. I., Mulbry, W. W., Engler, C. R., and Wild, J. R. 2002. Enhanced-rate biodegradation of organophosphate neurotoxins by immobilized nongrowing bacteria. Biotechnol. Progress 18:429–436.

    CAS  Google Scholar 

  • Kim, Y. J., Park, H. G., Yang, Y. L., Yoon, Y., Kim, S., and Oh, E. 2005. Multifunctional drug delivery system using starch-alginate beads for controlled release. Biol. Pharm. Bull. 28: 394–397.

    CAS  Google Scholar 

  • King, C. J. 1987. Separation and Purification: Critical Needs and Opportunities; Committee on Separation Science and Technology. Washington, DC: National Academy Press.

    Google Scholar 

  • Korhonen, A., Hemminki, K., and Vainio, H. 1982. Application of the chicken embryo in testing for embryotoxicity: thiurams. Scand. J. Work Environ. Health 8:63–69.

    CAS  Google Scholar 

  • Lahav, N., Shani, U., and Shabtai, J. 1978. Cross-linked smectites. I. Synthesis and properties of hydroxy-aluminum-montmorillonite. Clays Clay Miner. 26:107–115.

    CAS  Google Scholar 

  • Lebsky, V. K., Gonzalez-Bashan, L. E., and Bashan, Y. 2001. Ultrastructure of interaction in alginate beads between the microalgae Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense. Can. J. Microbiol. 47:1–8.

    CAS  Google Scholar 

  • Lee, C. M., Lu, C. J., and Chuang, M. S. 1994. Effects of immobilized cells on the biodegradation of chlorinated phenols. Water Sci. Technol. 30:87–90.

    CAS  Google Scholar 

  • Lo, S. L., Jeng, T. H., and Chin, L. H. 1997. Characteristics and adsorption properties of an iron coated sand. Water Sci. Technol. 35:63–70.

    CAS  Google Scholar 

  • Long, L. Q., and Yang, R. T. 2001. Carbon nanotubes as superior sorbent for dioxins. J. Am. Chem. Soc. 123:2058–2059.

    CAS  Google Scholar 

  • Loukidoua, M. X., Matisa, K. A., Zouboulisa, A. I., and Kyriakidou, M. L. 2003. Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res. 37: 4544–4552.

    Google Scholar 

  • Lussier, R. J., Magee, J. S., and Vaughan, D. E. W. 1980. Pillared interlayered clay (PILC) cracking catalysts preparation and properties. In: Proceedings of the 7th Canadian Symposium on Catalysis, ed. S. E. Wauke, S. K. Chakrabartty, p. 85. Edmonton, AB: Alberta Research Conference.

    Google Scholar 

  • Majima, T., Nomura, T., and Kawase, M. 1984. Porous ceramic carrier for methanogen immobilization. In Abstr. 18th Autumn Meeting, Soc. Chem. Eng. Japan, p. 539.

    Google Scholar 

  • Manning, B. A., and Goldberg, S. 1997. Adsorption and stability of arsenic-(III) at the clay mineral-water interface. Environ. Sci. Technol. 31:2005–2011.

    CAS  Google Scholar 

  • Manohar, S., Kim, C. K., and Karegoudar, T. B. 2001. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl. Microbiol. Biotechnol. 55:311–316.

    CAS  Google Scholar 

  • McKay, G., Blair, H. S., and Hindon, A. 1989. Equilibrium studies for the sorption of metal ions onto chitosan. Indian J. Chem. 28A:356–360.

    CAS  Google Scholar 

  • Mendil, D., Tuzen, M., and Soylak, M. 2008. A biosorption system for metal ions on Penicillium italicum-loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations. J. Hazard. Mater. 152:1171–1178.

    CAS  Google Scholar 

  • Meng, X. G., Korfiatis, G. P., Bang, S., and Bang, K. W. 2002. Combined effects of anions on arsenic removal by iron hydroxides. Toxicol. Lett. 133:103–111.

    CAS  Google Scholar 

  • Metcalf & Eddy, Inc. 1991. Advanced wastewater treatment. In: Wastewater Engineering Treatment, Disposal, Reuse, 3rd ed., p. 1334. New York: McGraw-Hill International Editions.

    Google Scholar 

  • Mishra, V. K., Srivastava, M. K., and Raizada, R. B. 1998. Testicular toxicity in rat to repeated oral administration of tetramethylthiuram disulfide (thiram). Ind. J. Exp. Biol. 36:390–394.

    CAS  Google Scholar 

  • Mogul, M. G., Akin, H., Hasirci, N., Trantolo, D. J., Gresser, J. D., and Wise, D. L. 1996. Controlled release of biologically active agents for purpose of agricultural crop management. Resources Conserv. Recycl. 16:289–320.

    Google Scholar 

  • Mouget, J. L., Dakhama, A., Lavoie, M. C., and De la Noue J. 1995. Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol. 18: 35–44.

    CAS  Google Scholar 

  • Munoz, J. A., Gonzalo, A., and Valiente, M. 2002. Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects. Environ. Sci. Technol. 36:3405–3411.

    CAS  Google Scholar 

  • Murugesana, G. S., Sathishkumar, M., and Swaminathan, K. 2006. Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresource Technol. 97:483–487.

    Google Scholar 

  • Muzzarelli, R. A. A. 1977. Chitin. New York: Pergamon Press.

    Google Scholar 

  • Ning, R.Y. 2002. Arsenic removal by reverse osmosis. Desalination 143:237–241.

    CAS  Google Scholar 

  • Novak, J., Vask, V., and Janak, J. 1965. Chromatographic method for the concentration of trace. Impurities in the atmosphere and other gases. Analyt. Chem. 37:660–666.

    CAS  Google Scholar 

  • Nussinovitch, A., Aboutboul, Y., Gershon, Z., and vanRijn, J. 1996. Changes in mechanical, structural, and denitrifying properties of entrapped Pseudomonas stutzeri bacteria preparations. Biotechnol. Progress 12:26–30.

    CAS  Google Scholar 

  • Occelli, M. L., and Laster, J. E. 1985. Nature of active sites and coking reactions in pillared clay minerals. Ind. Eng. Chem. Prod. Res. Dev. 24:27–32.

    CAS  Google Scholar 

  • Oh-Hama, T., and Miyachi, S. 1992. Chlorella. In: Micro-Algal Biotechnology, ed. M. A. Borowitzka, L. J. Borowitzka, pp. 3–26. Cambridge: Cambridge University Press.

    Google Scholar 

  • Onsoyen, E., and Skaugrud, O. 1990. Metal recovery using chitosan. J. Chem. Tech. Biotechnol. 49:395–404.

    CAS  Google Scholar 

  • Ouvrard, S., Simonnot, M. O., Donato, P., and Sardin, M. 2002. Diffusion controlled adsorption of arsenate on a natural manganese oxide. Ind. Eng. Chem. Res. 41:6194–6199.

    CAS  Google Scholar 

  • Pattanayak, J., Mondal, K., Mathew, S., and Lalvani, S. B. 2000. A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon 38:589–596.

    CAS  Google Scholar 

  • Pepperman, A. B., and Kuan, J. C. W. 1993. Slow release formulations of metribuzin based on alginate-kaolin-linseed oil. J. Control. Rel. 26:21–30.

    CAS  Google Scholar 

  • Pepperman, A. B., and Kuan, J. C. W. 1995. Controlled release formulations of alachlor based on calcium alginate. J. Control. Rel. 34:17–23.

    CAS  Google Scholar 

  • Perez, M. F., Pradas, E. G., Sanchez, M. V., and Cespedes, F. F. 2001. Mobility of atrazine from alginate-bentonite controlled release formulations in layered soil. Chemosphere 43: 347–353.

    Google Scholar 

  • Pfister, G., Bahadir, M., and Korte, F. 1986. Release characteristics of herbicides from Ca alginate gel formulations. J. Control. Rel. 3:229–233.

    CAS  Google Scholar 

  • Pokhrel, D., and Viraraghavan, T. 2006. Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res. 40:549–552.

    CAS  Google Scholar 

  • Poncelet, G., and Schutz, A. 1986. Pillared montmorillonite and beidellite. Acidity and catalytic properties. In: Organic and Inorganic Constrained Systems, ed. R. Setlon, p. 165. Dordrecht, The Netherlands: Reidel.

    Google Scholar 

  • Power, J. F., and Schepers, J. S. 1989. Nitrate contamination of ground-water in North America. Agric. Ecosys. Environ. 26:165–187.

    CAS  Google Scholar 

  • Quintelas, C., Fernandes, B., Castro, J., Figueiredo, H., and Tavares, T. 2008. Biosorption of Cr (VI) by a Bacillus coagulans biofilm supported on granular activated carbon (GAC). Chem. Eng. J. 136:195–203.

    CAS  Google Scholar 

  • Rhee, S. K., Lee, G. M., and Lee, S. T. 1996. Influence of a supplementary carbon source on biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Appl. Microbiol. Biotechnol. 44:816–822.

    CAS  Google Scholar 

  • Rorrer, G. L., Hsien, T. Y., and Way, J. D. 1993. Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Ind. Eng. Chem. Res. 32:2170–2178.

    CAS  Google Scholar 

  • Rudel, R., Slayton, T. M., and Beck, B. D. 1996. Implications of arsenic genotoxicity for dose response of carcinogenic effects. Regul. Toxicol. Pharm. 23:87–105.

    CAS  Google Scholar 

  • Sanli, O., and Isiklan, N. 2006. Controlled release formulations of carbaryl based on copper alginate, barium alginate and alginic acid beads. J. Appl. Polym. Sci. 102:4245–4253.

    CAS  Google Scholar 

  • Schnoor, J. L. 1996. Environmental Modeling: Fate and Transport of Pollutants in Water, Air, and Soil. New York: John Wiley & Sons.

    Google Scholar 

  • Singh, B., Sharma, D. K., and Gupta, A. 2007. Controlled release of thiram fungicide from starch-based hydrogels. J. Environ. Sci. Health Part B 42:677–695.

    CAS  Google Scholar 

  • Singh, B., Sharma, D. K., and Gupta, A. 2009a. The controlled and sustained release of a fungicide from starch and alginate beads. J. Environ. Sci. Health Part B 44:113–122.

    CAS  Google Scholar 

  • Singh, B., Sharma, D. K., and Gupta, A. 2009b. A study towards release dynamics of thiram fungicide from starch-alginate beads to control environmental and health hazards. J. Hazard. Mater. 161:208–216.

    CAS  Google Scholar 

  • Singh, T. S., and Pant, K. K. 2004. Equilibrium, kinetics and thermodynamics studies for adsorption of As(III) on activated alumina. Sep. Purif. Technol. 36:139–147.

    CAS  Google Scholar 

  • Smedley, P. L., and Kinniburgh, D. G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17:517–568.

    CAS  Google Scholar 

  • Stamberg, J., and Peska, J. 1983. Preparation of porous spherical cellulose. React. Polym. 1:145–147.

    CAS  Google Scholar 

  • Su, C. M., and Puls, R.W. 2001. Arsenate and arsenite removal by zerovalent iron: kinetics redox transformation and implications for in situ groundwater remediation. Environ. Sci. Technol. 35:1487–1492.

    CAS  Google Scholar 

  • Sumino, T., Nakamura, H., and Mori, N. 1993. Development of a high-efficiency wastewater treatment system using immobilized microorganisms. In: Industrial Application of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 377–391. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Suzuki, T. S., Bomani, J. O., Matsunaga, H., and Yokoyama, T. 2000. Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic. React. Funct. Polym. 43:165–172.

    CAS  Google Scholar 

  • Tal, Y., van Rijn, J., and Nussinovitch, A. 1997. Improvement of structural and mechanical properties of denitrifying alginate beads by freeze-drying. Biotechnol. Progress 13:788–793.

    CAS  Google Scholar 

  • Tal, Y., van Rijn, J., and Nussinovitch, A. 1999. Improvement of mechanical and biological properties of freeze-dried denitrifying alginate beads by using starch as a filler and carbon source. Appl. Microbiol. Biotechnol. 51:773–779.

    CAS  Google Scholar 

  • Tam, N. F. Y., Wong, Y. S., and Simpson, C. G. 1998. Repeated removal of copper by alginate beads and the enhancement by microalgae. Biotechnol. Tech. 12:187–190.

    CAS  Google Scholar 

  • Tatsuo, S., Hiroki, N., and Naomichi, M. 1991. Immobilization of activated sludge by the acrylamide method. J. Ferment. Bioeng. 2:141–143.

    Google Scholar 

  • Triegel, E. K., and Guo, L. 1994. Overview of the fate of pesticides in the environment, water balance; runoff vs. leaching. In: Mechanisms of Pesticide Movement into Ground Water, ed. R. C. Honeycutt, D. J. Schabackher. Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Trimnell, D., Shasha, B. S., and Otey, F. H. 1985. The effect of α-amylases upon the release of trifluralin encapsulated in starch. J. Control. Rel. 1:183–190.

    CAS  Google Scholar 

  • Tsou, M., and Pinnavaia, T. J. 1988. Chromia pillared clays. In: Pillard Clays, ed. R. Burch, p. 243. Amsterdam: Elsevier.

    Google Scholar 

  • Tsuji, K. 2001. Microencapsulation of pesticides and their improved handling safety. J. Microencap. 18:137–147.

    CAS  Google Scholar 

  • Vagliasindi, F. G. A., and Benjamin, M. M. 1998. Arsenic removal in fresh and non-preloaded ion exchange packed bed adsorption reactors. Water Sci. Technol. 38:337–343.

    CAS  Google Scholar 

  • Van der Berg, L., and Kennedy, K. J. 1981. Support materials for stationary fixed film reactors. Biotechnol. Lett. 3(4):165.

    Google Scholar 

  • Vaughan, R. L. J., and Reed, B. E. 2005. Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res. 39:1005–1014.

    CAS  Google Scholar 

  • Vijayaraghaghavan, K., and Yun, Y. S. 2008. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26:266–291.

    Google Scholar 

  • Waypa, J. J., Elimelech, M., and Hering, J. G. 1997. Arsenic removal by RO and NF membranes. J. Am. Water Works Assoc. 89:102–116.

    CAS  Google Scholar 

  • Westmeier, F., and Rehm, H. J. 1985. Biodegradation of 4-chlorophenol by entrapped Alcaligenes sp. A 7-2. Appl. Microbiol. Biotechnol. 22:301–305.

    CAS  Google Scholar 

  • Willaert, R. G., and Baron, G. V. 1996. Introduction. In: Immobilized Living Cell Systems: Modeling and Experimental Methods, ed. R. G. Willaert, G. V. Baron, L. De Backer, pp. 1–17. West Sussex, England: John Wiley & Sons Ltd.

    Google Scholar 

  • Williams, F. W., and Umstead, M. E. 1968. Determination of trace contaminants in air by concentrating on porous polymer beads. Anal. Chem. 40:2232–2234.

    CAS  Google Scholar 

  • Williams, R. J., Brooke, D. N., Matthiessen, P., Mills, M., Turnbull, A., and Harrison, R. M. 1995. Pesticide transport to surface waters within an agricultural catchment. J. Inst. Water Environ. Manage. 9:72–81.

    CAS  Google Scholar 

  • Wing, R. E., and Otey, F. H. 1983. Determination of reaction variables for the starch xanthide encapsulation of pesticides. J. Polym. Sci. Polym. Chem. Ed. 21:121–140.

    CAS  Google Scholar 

  • Wolf, B. 1997. Bead cellulose products with film formers and solubilizers for controlled drug release. Int. J. Pharm. 156:97–107.

    CAS  Google Scholar 

  • World Health Organization 1993. Guidelines for Drinking-Water Quality, vol. 1: Recommendations, 2nd ed. Geneva: World Health Organization.

    Google Scholar 

  • Worthing, C. R. 1987. The Pesticide Manual, 8th ed., pp. 807–808. Thornton Heath, UK: British Crop Protection Council.

    Google Scholar 

  • Xu, Y., Nakajima, T., and Ohki, A. 2002. Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite. J. Hazard. Mater. B92:275–287.

    Google Scholar 

  • Yang, R. T., Long, R. Q., Padin, J., Takahashi, A., and Takahashi, T. 1999. Adsorbents for dioxins: a new technique for sorbent screening for low-volatile organics. Ind. Eng. Chem. Res. 38: 2726–2731.

    CAS  Google Scholar 

  • Yang, T. C., and Zall, R. R. 1984. Adsorption of metals by natural polymers generated from seafood processing wastes. I & EC Product R & D 23:168–172.

    CAS  Google Scholar 

  • Zayed, G., and Winter, J. 1995. Batch and continuous production of lactic acid from salt whey using free and immobilized cultures of lactobacilli. Appl. Microbiol. Biotechnol. 44:362–366.

    CAS  Google Scholar 

  • Zhang, F. S., and Itoh, H. 2005. Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere 60:319–325.

    CAS  Google Scholar 

  • Zhu, G. L., Hu, Y. Y., and Wang, Q. R. 2009. Nitrogen removal performance of anaerobic ammonia oxidation co-culture immobilized in different gel carriers. Water Sci. Technol. 59:2379–2386.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Nussinovitch .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nussinovitch, A. (2010). Beads for Environmental Applications. In: Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6618-6_10

Download citation

Publish with us

Policies and ethics