Epithelial–Mesenchymal Transition in Development and Diseases

Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Epithelial–mesenchymal transition (EMT) is critical for appropriate embryo implantation, embryogenesis, wound healing, tissue regeneration, and organ development. During this EMT process, epithelial cells lose the adherent and tight junctions. They gain a mesenchymal cell phenotype that enables them to invade and migrate over long distances and resist apoptosis. A similar process is also detected in tumor metastasis, suggesting that the tumor cells hijack this developmental pathway for tumor progression. Here, we review three different types of EMT in physiological and pathological conditions with special focus on the new development on type 3 EMT in metastasis. We summarize the recent new findings on tumor microenvironment, signaling pathways, and mechanisms underlying the regulation of EMT at metastasis. Understanding the biology of EMT will open new avenues for controlling fibrosis and cancer progression.

Keywords

Zinc Migration Estrogen Adenocarcinoma Prostaglandin 

Notes

Acknowledgment

We apologize to the many contributors to this field whose works are important while we are unable to cite here. Our study is supported by the grants from NIH (RO1CA125454), the Susan G Komen Foundation (KG081310), and the Mary Kay Ash Foundation (to B.P. Zhou).

References

  1. Adam L, et al (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15(16):5060–5072.PubMedCrossRefGoogle Scholar
  2. Allington TM, Galliher-Beckley AJ, Schiemann WP (2009) Activated Abl kinase inhibits oncogenic transforming growth factor-{beta} signaling and tumorigenesis in mammary tumors. FASEB J 23:4231–4243.PubMedCrossRefGoogle Scholar
  3. Almand B, et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689.PubMedGoogle Scholar
  4. Ansieau S, et al (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14(1):79–89.PubMedCrossRefGoogle Scholar
  5. Apte RN, et al (2006) Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur J Cancer 42(6):751–759.PubMedCrossRefGoogle Scholar
  6. Arnott CH, et al (2004) Expression of both TNF-alpha receptor subtypes is essential for optimal skin tumour development. Oncogene 23(10):1902–1910.PubMedCrossRefGoogle Scholar
  7. Arnoux V, et al (2008) Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol Biol Cell 19(11):4738–4749.PubMedCrossRefGoogle Scholar
  8. Asangani IA, et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15):2128–2136.PubMedCrossRefGoogle Scholar
  9. Bataille F, et al (2008) Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn’s disease. Inflamm Bowel Dis 14(11):1514–1527.PubMedCrossRefGoogle Scholar
  10. Bhowmick NA, et al (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12(1):27–36.PubMedGoogle Scholar
  11. Bloushtain-Qimron N, et al (2008) Cell type-specific DNA methylation patterns in the human breast. Proc Natl Acad Sci U S A 105(37):14076–14081.PubMedCrossRefGoogle Scholar
  12. Bollrath J, et al (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15(2):91–102.PubMedCrossRefGoogle Scholar
  13. Bos PD, et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459(7249):1005–1009.PubMedCrossRefGoogle Scholar
  14. Bromberg J, Wang TC (2009) Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell 15(2):79–80.PubMedCrossRefGoogle Scholar
  15. Bruyere F, et al (2009) Snail expression is an independent predictor of tumor recurrence in superficial bladder cancers. Urol Oncol Epub ahead of print.Google Scholar
  16. Buijs JT, et al (2007) TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis 24(8):609–617.PubMedCrossRefGoogle Scholar
  17. Bunt SK, et al (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67(20):10019–10026.PubMedCrossRefGoogle Scholar
  18. Burk U, et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589.PubMedCrossRefGoogle Scholar
  19. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572.PubMedCrossRefGoogle Scholar
  20. Cheng CY, et al (2009) IL-1 beta induces urokinase-plasminogen activator expression and cell migration through PKC alpha, JNK1/2, and NF-kappaB in A549 cells. J Cell Physiol 219(1):183–193.PubMedCrossRefGoogle Scholar
  21. Christofori G (2006) New signals from the invasive front. Nature 441(7092):444–450.PubMedCrossRefGoogle Scholar
  22. Chua HL, et al (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26(5):711–724.PubMedCrossRefGoogle Scholar
  23. Chuang MJ, et al (2008) Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci 99(5):905–913.PubMedCrossRefGoogle Scholar
  24. Colomiere M, et al (2009) Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. Br J Cancer 100(1):134–144.PubMedCrossRefGoogle Scholar
  25. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266.PubMedCrossRefGoogle Scholar
  26. Cornil I, et al (1991) Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression. Proc Natl Acad Sci U S A 88(14):6028–6032.PubMedCrossRefGoogle Scholar
  27. Cowin P, Rowlands TM, Hatsell SJ (2005) Cadherins and catenins in breast cancer. Curr Opin Cell Biol 17(5):499–508.PubMedCrossRefGoogle Scholar
  28. Davidson LA, et al (2006), Integrin alpha5beta1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol 16(9):833–844.PubMedCrossRefGoogle Scholar
  29. Davidson NE, Sukumar S (2005) Of Snail, mice, and women. Cancer Cell 8(3):173–174.PubMedCrossRefGoogle Scholar
  30. Dawes-Hoang RE, et al (2005) Folded gastrulation, cell shape change and the control of myosin localization. Development 132(18):4165–4178.PubMedCrossRefGoogle Scholar
  31. De Wever O, et al (2004) Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-beta or wounding. J Cell Sci 117(Pt 20):4691–4703.PubMedCrossRefGoogle Scholar
  32. Diaz-Montero CM, et al (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59.PubMedCrossRefGoogle Scholar
  33. DiMeo TA, et al (2009) A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 69(13):5364–5373.PubMedCrossRefGoogle Scholar
  34. Dumont N, et al (2008) Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci U S A 105(39):14867–14872.PubMedCrossRefGoogle Scholar
  35. Egberts JH, et al (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 68(5):1443–1450.PubMedCrossRefGoogle Scholar
  36. Elloul S, et al (2005) Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103(8):1631–1643.PubMedCrossRefGoogle Scholar
  37. Feldmann G, et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67(5):2187–2196.PubMedCrossRefGoogle Scholar
  38. Fiaschi M, et al (2007) Targeted expression of GLI1 in the mammary gland disrupts pregnancy-induced maturation and causes lactation failure. J Biol Chem 282(49):36090–36101.PubMedCrossRefGoogle Scholar
  39. Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85(2):47–64.PubMedCrossRefGoogle Scholar
  40. Franci C, et al (2006) Expression of Snail protein in tumor-stroma interface. Oncogene 25(37):5134–5144.PubMedGoogle Scholar
  41. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174.PubMedCrossRefGoogle Scholar
  42. Greenburg G, Hay ED (1998) Cytoskeleton and thyroglobulin expression change during transformation of thyroid epithelium to mesenchyme-like cells. Development 102(3):605–622.Google Scholar
  43. Grego-Bessa J, et al (2004) Notch and epithelial-mesenchyme transition in development and tumor progression: another turn of the screw. Cell Cycle 3(6):718–721.PubMedGoogle Scholar
  44. Gregory PA, et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601.PubMedCrossRefGoogle Scholar
  45. Gressner AM, et al (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7:d793–d807.PubMedCrossRefGoogle Scholar
  46. Grivennikov S, et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15(2):103–113.Google Scholar
  47. Hartwell KA, et al (2006) The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci U S A 103(50):18969–18974.PubMedCrossRefGoogle Scholar
  48. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel), 154(1):8–20.CrossRefGoogle Scholar
  49. Hermann PC, et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323.PubMedCrossRefGoogle Scholar
  50. Hiratsuka S, et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375.PubMedCrossRefGoogle Scholar
  51. Hiratsuka S, et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10(11):1349–1355.PubMedCrossRefGoogle Scholar
  52. Hooper JE, Scott MP (2005) Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6(4):306–317.PubMedCrossRefGoogle Scholar
  53. Hotz B, et al (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13(16):4769–4776.PubMedCrossRefGoogle Scholar
  54. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558.PubMedCrossRefGoogle Scholar
  55. Imai T, et al (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163(4):1437–1447.PubMedCrossRefGoogle Scholar
  56. Isohata N, et al (2009) Hedgehog and epithelial-mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus. Int J Cancer 125(5):1212–1221.PubMedCrossRefGoogle Scholar
  57. Jacob L, Lum L (2007) Deconstructing the hedgehog pathway in development and disease. Science 318(5847):66–68.PubMedCrossRefGoogle Scholar
  58. Janda E, et al (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156(2):299–313.PubMedCrossRefGoogle Scholar
  59. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252.PubMedCrossRefGoogle Scholar
  60. Junghans D, Haas IG, Kemler R (2005) Mammalian cadherins and protocadherins: about cell death, synapses and processing. Curr Opin Cell Biol 17(5):446–452.PubMedCrossRefGoogle Scholar
  61. Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119(6):1417–1419.PubMedCrossRefGoogle Scholar
  62. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784.PubMedGoogle Scholar
  63. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428.PubMedCrossRefGoogle Scholar
  64. Karnoub AE, et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563.PubMedCrossRefGoogle Scholar
  65. Knight B, et al (2000) Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J Exp Med 192(12):1809–1818.PubMedCrossRefGoogle Scholar
  66. Kolsch V, et al (2007) Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315(5810):384–386.PubMedCrossRefGoogle Scholar
  67. Kong W, et al (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28(22):6773–6784.PubMedCrossRefGoogle Scholar
  68. Korpal M, et al (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914.PubMedCrossRefGoogle Scholar
  69. Krishnamachary B, et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143.PubMedGoogle Scholar
  70. Kudo-Saito C, et al (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15(3):195–206.PubMedCrossRefGoogle Scholar
  71. Kulbe H, et al (2007) The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 67(2):585–592.PubMedCrossRefGoogle Scholar
  72. Lee YH, et al (2008) Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-beta in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis 29(12):2243–2251.PubMedCrossRefGoogle Scholar
  73. Leong KG, et al (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204(12):2935–2948.PubMedCrossRefGoogle Scholar
  74. Liang M, Zhang P, Fu J (2007) Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett 258(1):31–37.PubMedCrossRefGoogle Scholar
  75. Lin EY, et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740.PubMedCrossRefGoogle Scholar
  76. Li X, et al (2006) Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 25(4):609–621.PubMedGoogle Scholar
  77. Li X, et al (2007) Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26(31):4489–4498.PubMedCrossRefGoogle Scholar
  78. Li Y, et al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69(16):6704–6712.PubMedCrossRefGoogle Scholar
  79. Li Y, Hively WP, Varmus HE (2000) Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 19(8):1002–1009.PubMedCrossRefGoogle Scholar
  80. Lunt SJ, Chaudary N, Hill RP (2009) The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26(1):19–34.PubMedCrossRefGoogle Scholar
  81. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688.PubMedCrossRefGoogle Scholar
  82. Mani SA, et al (2007) Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci U S A 104(24):10069–10074.PubMedCrossRefGoogle Scholar
  83. Mani SA, et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715.PubMedCrossRefGoogle Scholar
  84. Mannel DN et al (1994) Mechanisms involved in metastasis enhanced by inflammatory mediators. Circ Shock 44(1):9–13.PubMedGoogle Scholar
  85. Mantovani A, et al (2008) Cancer-related inflammation. Nature 454(7203):436–444.PubMedCrossRefGoogle Scholar
  86. Moody SE, et al (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8(3):197–209.PubMedCrossRefGoogle Scholar
  87. Mumm JB, Oft M (2008) Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene 27(45):5913–5919.PubMedCrossRefGoogle Scholar
  88. Nawshad A, et al (2005) Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 179(1–2):11–23.PubMedCrossRefGoogle Scholar
  89. Neth P, et al (2007) The Wnt signal transduction pathway in stem cells and cancer cells: influence on cellular invasion. Stem Cell Rev 3(1):18–29.PubMedCrossRefGoogle Scholar
  90. Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3(3):155–166.PubMedCrossRefGoogle Scholar
  91. Oda H, Tsukita S, Takeichi M (1998) Dynamic behavior of the cadherin-based cell-cell adhesion system during Drosophila gastrulation. Dev Biol 203(2):435–450.PubMedCrossRefGoogle Scholar
  92. Olive KP, et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461.PubMedCrossRefGoogle Scholar
  93. Ozdamar B, et al (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609.PubMedCrossRefGoogle Scholar
  94. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4(6):448–456.PubMedCrossRefGoogle Scholar
  95. Peinado H, et al (2005a) A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24(19):3446–3458.PubMedCrossRefGoogle Scholar
  96. Peinado H, Portillo F, Cano A (2005b) Switching on-off Snail: LOXL2 versus GSK3beta. Cell Cycle 4(12):1749–1752.PubMedCrossRefGoogle Scholar
  97. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78.PubMedCrossRefGoogle Scholar
  98. Qian F, et al (2005) Interaction between integrin alpha(5) and fibronectin is required for metastasis of B16F10 melanoma cells. Biochem Biophys Res Commun 333(4):1269–1275.PubMedCrossRefGoogle Scholar
  99. Radisky DC, et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436(7047):123–127.PubMedCrossRefGoogle Scholar
  100. Radisky DC, Kenny PA, Bissell MJ (2007) Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 101(4): 830–839.PubMedCrossRefGoogle Scholar
  101. Rastaldi MP, et al (2002) Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 62(1):137–146.PubMedCrossRefGoogle Scholar
  102. Rosen EM, et al (1991) Tumor necrosis factor stimulates epithelial tumor cell motility. Cancer Res 51(19):5315–5321.PubMedGoogle Scholar
  103. Sahlgren C, et al (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A 105(17):6392–6397.PubMedCrossRefGoogle Scholar
  104. Salez F, et al (1998) Transforming growth factor-beta1 in sarcoidosis. Eur Respir J 12(4):913–919.PubMedCrossRefGoogle Scholar
  105. Savagner P, et al (2005) Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol 202(3):858–866.PubMedCrossRefGoogle Scholar
  106. Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120(11):1351–1383.PubMedCrossRefGoogle Scholar
  107. Sinha P, et al (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179(2):977–983.PubMedGoogle Scholar
  108. Stadler BM, Ruohola-Baker H (2008) Small RNAs: keeping stem cells in line. Cell 132(4):563–566.PubMedCrossRefGoogle Scholar
  109. Staller P, et al (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425(6955):307–311.PubMedCrossRefGoogle Scholar
  110. Stappenbeck TS, Miyoshi H (2009) The role of stromal stem cells in tissue regeneration and wound repair. Science 2009. 324(5935):1666–9.PubMedCrossRefGoogle Scholar
  111. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230.PubMedCrossRefGoogle Scholar
  112. Stemmer V, et al (2008) Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 27(37):5075–5080.PubMedCrossRefGoogle Scholar
  113. Stoelcker B, et al (1995) Role of adhesion molecules and platelets in TNF-induced adhesion of tumor cells to endothelial cells: implications for experimental metastasis. J Inflamm 46(3):155–167.PubMedGoogle Scholar
  114. Studebaker AW, et al (2008) Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res 68(21):9087–9095.PubMedCrossRefGoogle Scholar
  115. Sullivan NJ, et al (2009) Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28:2940–2947.PubMedCrossRefGoogle Scholar
  116. Timmerman LA, et al (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18(1): p. 99–115.PubMedCrossRefGoogle Scholar
  117. Valastyan S, et al (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046.PubMedCrossRefGoogle Scholar
  118. Valcourt U, et al (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16(4):1987–2002.PubMedCrossRefGoogle Scholar
  119. Vidal-Vanaclocha F, et al (2000) IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci U S A 97(2):734–739.PubMedCrossRefGoogle Scholar
  120. Villanueva S, et al (2002) Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev Biol 241(2):289–301.PubMedCrossRefGoogle Scholar
  121. Vincent T, et al (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11:943–950.PubMedCrossRefGoogle Scholar
  122. Voronov E, et al (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100(5):2645–2650.PubMedCrossRefGoogle Scholar
  123. Wang X, et al (2008) Downregulation of Par-3 expression and disruption of Par complex integrity by TGF-beta during the process of epithelial to mesenchymal transition in rat proximal epithelial cells. Biochim Biophys Acta 1782(1):51–59.PubMedGoogle Scholar
  124. Wang Z, et al (2009) Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 69(6):2400–2407.PubMedCrossRefGoogle Scholar
  125. White LR, et al (2007) The characterization of alpha5-integrin expression on tubular epithelium during renal injury. Am J Physiol Renal Physiol 292(2):F567–F576.PubMedGoogle Scholar
  126. Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293(3):L525–L534.PubMedCrossRefGoogle Scholar
  127. Wu Y, et al (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15(5):416–428.PubMedCrossRefGoogle Scholar
  128. Yamashita S, et al (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 429(6989):298–302.PubMedCrossRefGoogle Scholar
  129. Yang J, et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939.PubMedCrossRefGoogle Scholar
  130. Yang L, et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35.PubMedCrossRefGoogle Scholar
  131. Yang MH, et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305.PubMedCrossRefGoogle Scholar
  132. Yang X, et al (2009) Regulation of {beta}4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition. J Cell Sci 122(Pt 14):2473–2480.PubMedCrossRefGoogle Scholar
  133. Yook JI., et al (2005) Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280(12):11740–11748.PubMedCrossRefGoogle Scholar
  134. Yook JI, et al (2006) A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8(12):1398–1406.PubMedCrossRefGoogle Scholar
  135. Young MR, Lathers DM (1999) Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int J Immunopharmacol 21(4):241–252.PubMedCrossRefGoogle Scholar
  136. Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24(37):5764–5774.PubMedCrossRefGoogle Scholar
  137. Zavadil J, et al (2004) Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23(5):1155–1165.PubMedCrossRefGoogle Scholar
  138. Zavadil J, et al (2007) Transforming growth factor-beta and microRNA:mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs 185(1–3):157–161.PubMedCrossRefGoogle Scholar
  139. Zeisberg EM, et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961.PubMedCrossRefGoogle Scholar
  140. Zeisberg M, et al (2003a) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9(7):964–968.PubMedCrossRefGoogle Scholar
  141. Zeisberg M, et al (2003b) Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol 285(6):F1060–F1067.PubMedGoogle Scholar
  142. Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119(6):1429–1437.PubMedCrossRefGoogle Scholar
  143. Zhou BP, et al (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6(10):931–940.PubMedCrossRefGoogle Scholar
  144. Zhu S, et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336.[p7]“However, several … regulation of EMT.” The sentence has been edited for better readability. Please check and approve the edit.[p8]“Second, many … remains unclear.” The meaning of the sentence is not clear. Please clarify.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Markey Cancer CenterUniversity of Kentucky School of MedicineLexingtonUSA
  2. 2.Department of Molecular and Cellular BiochemistryUniversity of Kentucky School of MedicineLexingtonUSA

Personalised recommendations