Skip to main content

Dormancy of Disseminated Tumor Cells: Reciprocal Crosstalk with the Microenvironment

  • Chapter
  • First Online:
The Tumor Microenvironment

Abstract

Majority of cancer patients will die of metastases that develop from disseminated tumor cells (DTCs), months, years, or even decades after treatment. This pause in cancer progression suggests that, during these disease-free periods, DTCs may stop proliferating and survive in a dormant state. The mechanisms that determine whether tumor cells, after disseminating to target organs, will continue to proliferate, die or enter a protracted state of dormancy are poorly understood. Here, we review the different manifestations of dormancy and the experimental and clinical evidence supporting that the target organ microenvironment where DTCs lodge might influence the choice to enter dormancy. We also review the available animal models to study DTCs dormancy. This information is important to design strategies to maintain dormancy of DTCs or eradicate DTCs before they progress to overt metastasis. Such information would lead to anti-metastatic and/or metastasis preventive therapies which are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam AP, George A, Schewe D et al (2009) Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res 69:5664–5672

    PubMed  CAS  Google Scholar 

  • Adorno M, Cordenonsi M, Montagner M et al (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137:87–98

    PubMed  CAS  Google Scholar 

  • Aguirre Ghiso JA (2002) Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 21:2513–2524

    PubMed  Google Scholar 

  • Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147:89–104

    PubMed  CAS  Google Scholar 

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    PubMed  CAS  Google Scholar 

  • Aguirre-Ghiso JA, Estrada Y, Liu D et al (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63:1684–1695

    PubMed  CAS  Google Scholar 

  • Aguirre-Ghiso JA, Liu D, Mignatti A et al (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12:863–879

    PubMed  CAS  Google Scholar 

  • Alexandrow MG, Moses HL (1995) Transforming growth factor beta and cell cycle regulation. Cancer Res 55:1452–1457

    PubMed  CAS  Google Scholar 

  • Alix-Panabieres C, Rebillard X, Brouillet JP et al (2005) Detection of circulating prostate-specific antigen-secreting cells in prostate cancer patients. Clin Chem 51:1538–1541

    PubMed  CAS  Google Scholar 

  • Allan AL, Vantyghem SA, Tuck AB et al (2006) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26:87–98

    PubMed  CAS  Google Scholar 

  • Ansieau S, Bastid J, Doreau A et al (2008a) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14:79–89

    PubMed  CAS  Google Scholar 

  • Ansieau S, Hinkal G, Thomas C et al (2008b) Early origin of cancer metastases: dissemination and evolution of premalignant cells. Cell Cycle 7:3659–3663

    PubMed  CAS  Google Scholar 

  • Arbiser JL, Moses MA, Fernandez CA et al (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci U S A 94:861–866

    PubMed  CAS  Google Scholar 

  • Atfi A, Baron R (2008) p53 brings a new twist to the Smad signaling network. Sci Signal 1:pe33

    PubMed  Google Scholar 

  • Azmi S, Ozog A, Taneja R (2004) Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors. J Biol Chem 279:52643–52652

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Zhan R, Chaudhuri A et al (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938

    PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH, Akhurst RJ (2009) Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res 11:202

    PubMed  Google Scholar 

  • Barcellos-Hoff MH, Ravani SA (2000) Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60:1254–1260

    PubMed  CAS  Google Scholar 

  • Barkan D, Kleinman H, Simmons JL et al (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68:6241–6250

    PubMed  CAS  Google Scholar 

  • Bidard FC, Vincent-Salomon A, Sigal-Zafrani B et al (2008) Time to metastatic relapse and breast cancer cells dissemination in bone marrow at metastatic relapse. Clin Exp Metastasis 25:871–875

    PubMed  CAS  Google Scholar 

  • Braun S, Auer D, Marth C (2009) The prognostic impact of bone marrow micrometastases in women with breast cancer. Cancer Invest 27:598–603

    PubMed  CAS  Google Scholar 

  • Braun S, Naume B (2005) Circulating and disseminated tumor cells. J Clin Oncol 23:1623–1626

    PubMed  Google Scholar 

  • Cameron MD, Schmidt EE, Kerkvliet N et al (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60:2541–2546

    PubMed  CAS  Google Scholar 

  • Chaurasia P, Mezei M, Zhou M-M et al (2009) Computer aided identification of small molecules disrupting uPAR/α5β1-integrin interaction: a new paradigm for metastasis prevention. PLoS ONE 4:e4617

    Google Scholar 

  • Chen SC, Wang BW, Wang DL et al (2008) Hypoxia induces discoidin domain receptor-2 expression via the p38 pathway in vascular smooth muscle cells to increase their migration. Biochem Biophys Res Commun 374:662–667

    PubMed  CAS  Google Scholar 

  • Chomel JC, Brizard F, Veinstein A et al (2000) Persistence of BCR-ABL genomic rearrangement in chronic myeloid leukemia patients in complete and sustained cytogenetic remission after interferon-alpha therapy or allogeneic bone marrow transplantation. Blood 95:404–408

    PubMed  CAS  Google Scholar 

  • Cordenonsi M, Dupont S, Maretto S et al (2003) Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113:301–314

    PubMed  CAS  Google Scholar 

  • Corey E, Quinn JE, Vessella RL (2003) A novel method of generating prostate cancer metastases from orthotopic implants. Prostate 56:110–114

    PubMed  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA et al (1994a) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584

    PubMed  CAS  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA et al (1994b) The p53 tumor suppressor gene inhibits angiogenesis by stimulating the production of thrombospondin. Cold Spring Harb Symp Quant Biol 59:483–489

    PubMed  CAS  Google Scholar 

  • Davis TA, Maloney DG, Czerwinski DK et al (1998) Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood 92:1184–1190

    PubMed  CAS  Google Scholar 

  • Deheuninck J, Luo K (2009) Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 19:47–57

    PubMed  CAS  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    PubMed  CAS  Google Scholar 

  • Farrar JD, Katz KH, Windsor J et al (1999) Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. J Immunol 162:2842–2849

    PubMed  CAS  Google Scholar 

  • Fehm T, Muller V, Alix-Panabieres C et al (2008) Micrometastatic spread in breast cancer: detection, molecular characterization and clinical relevance. Breast Cancer Res 10(Suppl 1):S1

    PubMed  Google Scholar 

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    PubMed  CAS  Google Scholar 

  • Florenes VA, Bhattacharya N, Bani MR et al (1996) TGF-beta mediated G1 arrest in a human melanoma cell line lacking p15INK4B: evidence for cooperation between p21Cip1/WAF1 and p27Kip1. Oncogene 13:2447–2457

    PubMed  CAS  Google Scholar 

  • Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    PubMed  CAS  Google Scholar 

  • Folkman J, Hanahan D (1991) Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 22:339–347

    PubMed  CAS  Google Scholar 

  • Fujimoto K, Hamaguchi H, Hashiba T et al (2007) Transcriptional repression by the basic helix-loop-helix protein Dec2: multiple mechanisms through E-box elements. Int J Mol Med 19:925–932

    PubMed  CAS  Google Scholar 

  • Galon J, Fridman WH, Pages F (2007) The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67:1883–1886

    PubMed  CAS  Google Scholar 

  • Gattelli A, Cirio MC, Quaglino A et al (2004) Progression of pregnancy-dependent mouse mammary tumors after long dormancy periods. Involvement of Wnt pathway activation. Cancer Res 64:5193–5199

    PubMed  CAS  Google Scholar 

  • Gimbrone MA Jr, Leapman SB, Cotran RS et al (1972) Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136:261–276

    PubMed  Google Scholar 

  • Guise TA, Chirgwin JM (2003) Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop Relat Res (415 Suppl):S32–S38

    PubMed  Google Scholar 

  • Heiss MM, Allgayer, H, Gruetzner KU et al (1995) Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: a reference to early systemic disease in solid cancer. Nat Med 1:1035–1039

    PubMed  CAS  Google Scholar 

  • Hemsen A, Riethdorf L, Brunner N et al (2003) Comparative evaluation of urokinase-type plasminogen activator receptor expression in primary breast carcinomas and on metastatic tumor cells. Int J Cancer 107:903–909

    PubMed  CAS  Google Scholar 

  • Henriet P, Zhong ZD, Brooks PC et al (2000) Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1. Proc Natl Acad Sci U S A 97:10026–10031

    PubMed  CAS  Google Scholar 

  • Hoek KS, Eichhoff OM, Schlegel NC et al (2008) In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 68:650–656

    PubMed  CAS  Google Scholar 

  • Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153

    PubMed  CAS  Google Scholar 

  • Horak CE, Lee JH, Marshall JC et al (2008) The role of metastasis suppressor genes in metastatic dormancy. APMIS 116:586–601

    PubMed  CAS  Google Scholar 

  • Huang SS, Huang JS (2005) TGF-beta control of cell proliferation. J Cell Biochem 96:447–462

    PubMed  CAS  Google Scholar 

  • Husemann Y, Geigl JB, Schubert F et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    PubMed  Google Scholar 

  • Husemann Y, Klein CA (2009) The analysis of metastasis in transgenic mouse models. Transgenic Res 18:1–5

    PubMed  Google Scholar 

  • Ignatiadis M, Georgoulias V, Mavroudis D (2008) Micrometastatic disease in breast cancer: clinical implications. Eur J Cancer 44:2726–2736

    PubMed  CAS  Google Scholar 

  • Ivaska J, Reunanen H, Westermarck J et al (1999) Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J Cell Biol 147:401–416

    PubMed  CAS  Google Scholar 

  • Iwase H, Omoto Y, Iwata H et al (1998) Genetic and epigenetic alterations of the estrogen receptor gene and hormone independence in human breast cancer. Oncology 55(Suppl 1):11–16

    PubMed  CAS  Google Scholar 

  • Janni W, Rjosk D, Braun S (2000) Clinical relevance of occult metastatic cells in the bone marrow of patients with different stages of breast cancer. Clin Breast Cancer 1:217–225

    PubMed  CAS  Google Scholar 

  • Kaipainen A, Kieran MW, Huang S et al (2007) PPARalpha deficiency in inflammatory cells suppresses tumor growth. PLoS One 2:e260

    Google Scholar 

  • Kang Y, He W, Tulley S et al (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A 102:13909–13914

    PubMed  CAS  Google Scholar 

  • Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    PubMed  CAS  Google Scholar 

  • Kell MR, Winter DC, O’Sullivan GC et al (2000) Biological behaviour and clinical implications of micrometastases. Br J Surg 87:1629–1639

    PubMed  CAS  Google Scholar 

  • Kienast Y, von Baumgarten L, Fuhrmann M et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122

    PubMed  CAS  Google Scholar 

  • Klein CA (2002) Direct molecular analysis of single disseminated cancer cells: a prerequisite for the development of adjuvant therapies? Acta Med Austriaca Suppl 59:10–13

    PubMed  CAS  Google Scholar 

  • Klein CA (2008) The direct molecular analysis of metastatic precursor cells in breast cancer: a chance for a better understanding of metastasis and for personalised medicine. Eur J Cancer 44:2721–2725

    PubMed  CAS  Google Scholar 

  • Klein CA, Blankenstein TJ, Schmidt-Kittler O et al (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360:683–689

    PubMed  CAS  Google Scholar 

  • Koebel CM, Vermi W, Swann JB et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907

    PubMed  CAS  Google Scholar 

  • Kook YH, Adamski J, Zelent A et al (1994) The effect of antisense inhibition of urokinase receptor in human squamous cell carcinoma on malignancy. EMBO J 13:3983–3991

    PubMed  CAS  Google Scholar 

  • Kusumi T, Koie T, Tanaka M et al (2008) Immunohistochemical detection of carcinoma in radical prostatectomy specimens following hormone therapy. Pathol Int 58:687–694

    PubMed  CAS  Google Scholar 

  • Lahlou H, Sanguin-Gendreau V, Zuo D et al (2007) Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci U S A 104: 20302–20307

    PubMed  CAS  Google Scholar 

  • Logan PT, Fernandes BF, Di Cesare S et al (2008) Single-cell tumor dormancy model of uveal melanoma. Clin Exp Metastasis 25:509–516

    PubMed  Google Scholar 

  • Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153:865–873

    PubMed  CAS  Google Scholar 

  • MacKie RM, Reid R, Junor B (2003) Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med 348:567–568

    PubMed  Google Scholar 

  • Mahnke YD, Schwendemann J, Beckhove P et al (2005) Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115:325–336

    PubMed  CAS  Google Scholar 

  • Marches R, Scheuermann RH, Uhr JW (1998) Cancer dormancy: role of cyclin-dependent kinase inhibitors in induction of cell cycle arrest mediated via membrane IgM Cancer Res 58:691–697

    PubMed  CAS  Google Scholar 

  • Morgan TM, Lange PH, Porter MP et al (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15:677–683

    PubMed  CAS  Google Scholar 

  • Morgan TM, Lange PH, Vessella RL (2007) Detection and characterization of circulating and disseminated prostate cancer cells. Front Biosci 12:3000–3009

    PubMed  CAS  Google Scholar 

  • Mostaghel EA, Montgomery B, Nelson PS (2009) Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol Oncol 27:251–257

    PubMed  CAS  Google Scholar 

  • Msaouel P, Pissimissis N, Halapas A et al (2008) Mechanisms of bone metastasis in prostate cancer: clinical implications. Best Pract Res Clin Endocrinol Metab 22:341–355

    PubMed  CAS  Google Scholar 

  • Mundy GR (1997) Mechanisms of bone metastasis. Cancer 80:1546–1556

    PubMed  CAS  Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    PubMed  CAS  Google Scholar 

  • Nash KT, Phadke PA, Navenot JM et al (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99:309–321

    PubMed  CAS  Google Scholar 

  • Naumov GN, Bender E, Zurakowski D et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325

    PubMed  Google Scholar 

  • Olumi AF, Grossfeld GD, Hayward SW et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    PubMed  CAS  Google Scholar 

  • Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23:41–56.

    PubMed  Google Scholar 

  • Pan Y, Haines DS (2000) Identification of a tumor-derived p53 mutant with novel transactivating selectivity. Oncogene 19:3095–3100

    PubMed  CAS  Google Scholar 

  • Pantel K, Alix-Panabieres C, Riethdorf S (2009) Cancer micrometastases. Nat Rev Clin Oncol 6:339–351

    PubMed  CAS  Google Scholar 

  • Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456

    PubMed  CAS  Google Scholar 

  • Pierga JY, Bonneton C, Magdelenat H et al (2005) Real-time quantitative PCR determination of urokinase-type plasminogen activator receptor (uPAR) expression of isolated micrometastatic cells from bone marrow of breast cancer patients. Int J Cancer 114:291–298

    PubMed  CAS  Google Scholar 

  • Prince S, Carreira S, Vance KW et al (2004) Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res 64:1669–1674

    PubMed  CAS  Google Scholar 

  • Quesnel B (2006) Cancer vaccines and tumor dormancy: a long-term struggle between host antitumor immunity and persistent cancer cells? Expert Rev Vaccines 5:773–781

    PubMed  CAS  Google Scholar 

  • Quesnel B (2008) Tumor dormancy and immunoescape. APMIS 116:685–694

    PubMed  Google Scholar 

  • Rak J, Mitsuhashi Y, Bayko L et al (1995) Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55: 4575–4580

    PubMed  CAS  Google Scholar 

  • Reed JA, Bales E, Xu W et al (2001) Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling. Cancer Res 61:8074–8078

    PubMed  CAS  Google Scholar 

  • Riethdorf S, Pantel K (2008) Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology 75:140–148

    PubMed  Google Scholar 

  • Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    PubMed  CAS  Google Scholar 

  • Salm SN, Burger PE, Coetzee S et al (2005) TGF-{beta} maintains dormancy of prostatic stem cells in the proximal region of ducts. J Cell Biol 170:81–90

    PubMed  CAS  Google Scholar 

  • Sang L, Coller HA, Roberts JM. (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science. 321(5892):1095–1100.

    Google Scholar 

  • Santen RJ, Song RX, Zhang Z et al (2005) Adaptive hypersensitivity to estrogen: mechanisms and clinical relevance to aromatase inhibitor therapy in breast cancer treatment. J Steroid Biochem Mol Biol 95:155–165

    PubMed  CAS  Google Scholar 

  • Saudemont A, Hamrouni A, Marchetti P et al (2007) Dormant tumor cells develop cross-resistance to apoptosis induced by CTLs or imatinib mesylate via methylation of suppressor of cytokine signaling 1. Cancer Res 67:4491–4498

    PubMed  CAS  Google Scholar 

  • Saudemont A, Quesnel B (2004) In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood 104:2124–2133

    PubMed  CAS  Google Scholar 

  • Schlegel NC, Eichhoff OM, Hemmi S et al (2009) Id2 suppression of p15 counters TGF-beta-mediated growth inhibition of melanoma cells. Pigment Cell Melanoma Res 22:445–453

    PubMed  CAS  Google Scholar 

  • Schmidt-Kittler O, Ragg T, Daskalakis A et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 100:7737–7742

    PubMed  CAS  Google Scholar 

  • Schwarte-Waldhoff I, Volpert OV, Bouck NP et al (2000) Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci U S A 97:9624–9629

    PubMed  CAS  Google Scholar 

  • Seoane J (2006) Escaping from the TGFbeta anti-proliferative control. Carcinogenesis 27:2148–2156

    PubMed  CAS  Google Scholar 

  • Shachaf CM, Felsher DW (2005) Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Res 65:4471–4474

    PubMed  CAS  Google Scholar 

  • Shachaf CM, Gentles AJ, Elchuri S et al (2008) Genomic and proteomic analysis reveals a threshold level of MYC required for tumor maintenance. Cancer Res 68:5132–5142

    PubMed  CAS  Google Scholar 

  • Shachaf CM, Kopelman AM, Arvanitis C et al (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431:1112–1117

    PubMed  CAS  Google Scholar 

  • Sharma SV, Gajowniczek P, Way IP et al (2006) A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 10:425–435

    PubMed  CAS  Google Scholar 

  • Sheibani N, Frazier WA (1996) Repression of thrombospondin-1 expression, a natural inhibitor of angiogenesis, in polyoma middle T transformed NIH3T3 cells. Cancer Lett 107:45–52

    PubMed  CAS  Google Scholar 

  • Shibue T, Weinberg RA (2009) Integrin Œ≤1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A 106:10290–10295

    PubMed  CAS  Google Scholar 

  • Sidky YA, Borden EC (1987) Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 47:5155–5161

    PubMed  CAS  Google Scholar 

  • Slade MJ, Singh A, Smith BM et al (2005) Persistence of bone marrow micrometastases in patients receiving adjuvant therapy for breast cancer: results at 4 years. Int J Cancer 114:94–100

    PubMed  CAS  Google Scholar 

  • Solakoglu O, Maierhofer C, Lahr G et al (2002) Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc Natl Acad Sci U S A 99:2246–2251

    PubMed  CAS  Google Scholar 

  • Steeg PS, Ouatas T, Halverson D et al (2003) Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 4:51–62

    PubMed  CAS  Google Scholar 

  • Stoecklein NH, Hosch SB, Bezler M et al (2008) Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13:441–453

    PubMed  CAS  Google Scholar 

  • Su JD, Mayo LD, Donner DB et al (2003) PTEN and phosphatidylinositol 3¢ -kinase inhibitors up-regulate p53 and block tumor-induced angiogenesis: evidence for an effect on the tumor and endothelial compartment. Cancer Res 63:3585–3592

    PubMed  CAS  Google Scholar 

  • Tang B, Yoo N, Vu M et al (2007) Transforming growth factor-beta can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model. Cancer Res 67:8643–8652

    PubMed  CAS  Google Scholar 

  • Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746

    PubMed  CAS  Google Scholar 

  • Thomas C, Wiesner C, Melchior SW et al (2009) Urokinase-plasminogen-activator receptor expression in disseminated tumour cells in the bone marrow and peripheral blood of patients with clinically localized prostate cancer. BJU Int 104:29–34

    PubMed  CAS  Google Scholar 

  • Tian M, Schiemann WP (2009) The TGF-beta paradox in human cancer: an update. Future Oncol 5:259–271

    PubMed  CAS  Google Scholar 

  • Udagawa T, Fernandez A, Achilles E-G et al (2002) Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 16:1361–1370

    PubMed  CAS  Google Scholar 

  • Uhr JW, Tucker T, May RD et al (1991) Cancer dormancy: studies of the murine BCL1 lymphoma. Cancer Res 51:5045s–5053s

    PubMed  CAS  Google Scholar 

  • van Agthoven T, van Agthoven TL, Dekker A et al (1994) Induction of estrogen independence of ZR-75–1 human breast cancer cells by epigenetic alterations. Mol Endocrinol 8: 1474–1483

    PubMed  CAS  Google Scholar 

  • van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    PubMed  CAS  Google Scholar 

  • Voest EE, Kenyon BM, O’Reilly MS et al (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87:581–586

    PubMed  CAS  Google Scholar 

  • Volpert OV, Dameron KM, Bouck N (1997) Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14:1495–1502

    PubMed  CAS  Google Scholar 

  • Wall SJ, Werner E, Werb Z et al (2005) Discoidin domain receptor 2 mediates tumor cell cycle arrest induced by fibrillar collagen. J Biol Chem 280:40187–40194

    PubMed  CAS  Google Scholar 

  • Wall SJ, Zhong ZD, DeClerck YA (2007) The cyclin-dependent kinase inhibitors p15INK4B and p21CIP1 are critical regulators of fibrillar collagen-induced tumor cell cycle arrest. J Biol Chem 282:24471–24476

    PubMed  CAS  Google Scholar 

  • Watnick RS, Cheng YN, Rangarajan A et al (2003) Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3:219–231

    PubMed  CAS  Google Scholar 

  • Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245

    PubMed  CAS  Google Scholar 

  • Weigelt B, Peterse JL, van ‘t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    PubMed  CAS  Google Scholar 

  • Wen S, Stolarov J, Myers MP et al (2001) PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci U S A 98:4622–4627

    PubMed  CAS  Google Scholar 

  • White DE, Kurpios NA, Zuo D et al (2004) Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6:159–170

    PubMed  CAS  Google Scholar 

  • White DE, Rayment JH, Muller WJ (2006) Addressing the role of cell adhesion in tumor cell dormancy. Cell Cycle 5:1756–1759

    PubMed  CAS  Google Scholar 

  • Wijsman JH, Cornelisse CJ, Keijzer R et al (1991) A prolactin-dependent, metastasising rat mammary carcinoma as a model for endocrine-related tumour dormancy. Br J Cancer 64:463–468

    PubMed  CAS  Google Scholar 

  • Wikman H, Vessella R, Pantel K (2008) Cancer micrometastasis and tumour dormancy. APMIS 116:754–770

    PubMed  CAS  Google Scholar 

  • Wu S, Hultquist A, Hydbring P et al (2009) TGF-beta enforces senescence in Myc-transformed hematopoietic tumor cells through induction of Mad1 and repression of Myc activity. Exp Cell Res 315:3099–3111

    PubMed  CAS  Google Scholar 

  • Xie W, Mertens JC, Reiss DJ et al (2002) Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 62:497–505

    PubMed  CAS  Google Scholar 

  • Yamshchikov GV, Mullins DW, Chang CC et al (2005) Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J Immunol 174:6863–6871

    PubMed  CAS  Google Scholar 

  • Yefenof E, Picker LJ, Scheuermann RH et al (1993a) Cancer dormancy: isolation and characterization of dormant lymphoma cells. Proc Natl Acad Sci U S A 90:1829–1833

    PubMed  CAS  Google Scholar 

  • Yefenof E, Picker LJ, Scheuermann RH et al (1993b) Induction of B cell tumor dormancy by anti-idiotypic antibodies. Curr Opin Immunol 5:740–744

    PubMed  CAS  Google Scholar 

  • Zhang B, Zhang Y, Bowerman NA et al (2008) Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res 68:1563–1571

    PubMed  CAS  Google Scholar 

  • Zhang Y, Ma B, Fan Q (2009) Mechanisms of breast cancer bone metastasis. Cancer Lett 292:1–7

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Samuel Waxman Cancer Research Foundation Tumor Dormancy Program (to JAG), NIH/NCI (CA109182 to JAG), NIEHS (ES017146 to JAG), New York State Stem Cell Science – NYSTEM (to JAG) and NIDCR (DE020121 to AR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Aguirre-Ghiso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bragado, P., Ranganathan, A.C., Aguirre-Ghiso, J.A. (2010). Dormancy of Disseminated Tumor Cells: Reciprocal Crosstalk with the Microenvironment. In: Bagley, R. (eds) The Tumor Microenvironment. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6615-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6615-5_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6614-8

  • Online ISBN: 978-1-4419-6615-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics