Skip to main content

TWEAK and TNF Regulation of Sclerostin: A Novel Pathway for the Regulation of Bone Remodelling

  • Conference paper
  • First Online:
Advances in TNF Family Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 691))

Abstract

TNF-ligand and TNF-receptor family members have established essential roles in the regulation of bone remodelling. We showed recently that TWEAK is a novel mediator in a mouse model of inflammatory bone destruction and that osteoblast lineage cells expressed the TWEAK receptor, fibroblast growth factor-inducible gene 14 (Fn14). Subsequent studies have revealed that TWEAK has a number of effects on human primary osteoblasts, including the strong induction of cell proliferation and the inhibition of in vitro mineralisation. Most notably, TWEAK induced the expression of the negative regulator of bone mass, sclerostin. TWEAK and TNF-induced sclerostin expression synergistically and these effects were dependent on extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK) phosphorylation. While sclerostin expression was induced by TWEAK in proliferating cells, there was an inverse relationship between sclerostin expression and the proliferative potential in the responding cells. TWEAK and TNF were found to have divergent effects on other aspects of osteoblast behaviour, including the expression of a number of key genes involved in osteoblastogenesis and osteoblast function. These findings suggest that the roles of TWEAK and TNF need to be considered together in the regulation of physiologic as well as inflammation-driven osteoblast differentiation. In particular, the ways in which these cytokines may synergize or antagonize each other’s activity need to be elucidated further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL (1997) TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem;272(51):32401–32410

    Article  CAS  PubMed  Google Scholar 

  2. Chicheportiche Y, Chicheportiche R, Sizing I, Thompson J, Benjamin CB, Ambrose C, Dayer JM (2002) Proinflammatory activity of TWEAK on human dermal fibroblasts and synoviocytes: blocking and enhancing effects of anti-TWEAK monoclonal antibodies. Arthritis Res 4(2):126–133

    Article  CAS  PubMed  Google Scholar 

  3. Wiley SR, Winkles JA (2003) TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev 14(3–4):241–249

    Article  CAS  PubMed  Google Scholar 

  4. Feng SLY, Guo Y, Factor VM, Thorgeirsson SS, Bell DW, Testa JR, Peifley KA, Winkles JA (2000) The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. Am J Pathol 156(4):1253–1261

    CAS  PubMed  Google Scholar 

  5. Saas P, Boucraut J, Walker PR, Quiquerez AL, Billot M, Desplat-Jego S, Chicheportiche Y, Dietrich PY (2000) TWEAK stimulation of astrocytes and the proinflammatory consequences. Glia 32(1):102–107

    Article  CAS  PubMed  Google Scholar 

  6. Yepes M, Brown SAN, Moore EG, Smith EP, Lawrence DA, Winkles JA (2005) A soluble fn14-fc decoy receptor reduces infarct volume in a murine model of cerebral ischemia 1. Am J Pathol 166(2):511–520

    CAS  PubMed  Google Scholar 

  7. Campbell S, Michaelson J, Burkly L, Putterman C (2004) The role of TWEAK/Fn14 IN the pathogenesis of inflammation and systemic autoimmunity. Front Biosci 9:2273–2284

    Article  CAS  PubMed  Google Scholar 

  8. Meighan-Mantha RL, Hsu DK, Guo Y, Brown SA, Feng SL, Peifley KA, Alberts GF, Copeland NG, Gilbert DJ, Jenkins NA, Richards CM, Winkles JA (1999) The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration. J Biol Chem 274(46):33166–33176

    Article  CAS  PubMed  Google Scholar 

  9. Brown SA, Richards CM, Hanscom HN, Feng SL, Winkles JA (2003) The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation. Biochem J 371(Pt 2):395–403

    Article  CAS  PubMed  Google Scholar 

  10. Donohue PJ, Richards CM, Brown SA, Hanscom HN, Buschman J, Thangada S, Hla T, Williams MS, Winkles JA (2003) TWEAK is an endothelial cell growth and chemotactic factor that also potentiates FGF-2 and VEGF-A mitogenic activity. Arterioscler Thromb Vasc Biol 23(4):594–600

    Article  CAS  PubMed  Google Scholar 

  11. Ando T, Ichikawa J, Wako M, Hatsushika K, Watanabe Y, Sakuma M, Tasaka K, Ogawa H, Hamada Y, Yagita H, Nakao A (2006) TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in mouse osteoblastic MC3T3-E1 cells. Arthritis Res Ther 8(5):R146

    Article  PubMed  Google Scholar 

  12. Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 15(1):49–60

    Article  PubMed  Google Scholar 

  13. Schett G, Redlich K, Hayer S, Zwerina J, Bolon B, Dunstan C, Gortz B, Schulz A, Bergmeister H, Kollias G, Steiner G, Smolen JS (2003) Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum 48(7):2042–2051

    Article  CAS  PubMed  Google Scholar 

  14. Crotti TN, Smith MD, Findlay DM, Zreiqat H, Ahern MJ, Weedon H, Hatzinikolous G, Capone M, Holding C, Haynes DR (2004) Factors regulating osteoclast formation in human tissues adjacent to peri-implant bone loss: expression of receptor activator NFkappaB, RANK ligand and osteoprotegerin. Biomaterials 25(4):565–573

    Article  CAS  PubMed  Google Scholar 

  15. Crotti TN, Ahern MJ, Lange K, Weedon H, Coleman M, Roberts-Thomson PJ, Haynes DR, Smith MD (2003) Variability of RANKL and osteoprotegerin staining in synovial tissue from patients with active rheumatoid arthritis: quantification using color video image analysis. J Rheumatol 30(11):2319–2324

    CAS  PubMed  Google Scholar 

  16. Holding CA, Findlay DM, Stamenkov R, Neale SD, Lucas H, Dharmapatni AS, Callary SA, Shrestha KR, Atkins GJ, Howie DW, Haynes DR (2006) The correlation of RANK, RANKL and TNFalpha expression with bone loss volume and polyethylene wear debris around hip implants. Biomaterials 27(30):5212–5219

    Article  CAS  PubMed  Google Scholar 

  17. Howie DW, Neale SD, Stamenkov R, McGee MA, Taylor DJ, Findlay DM (2007) Progression of acetabular periprosthetic osteolytic lesions measured with computed tomography. J Bone Joint Surg Am 89(8):1818–1825

    Article  PubMed  Google Scholar 

  18. Perper SJ, Browning B, Burkly LC, Weng S, Gao C, Giza K, Su L, Tarilonte L, Crowell T, Rajman L, Runkel L, Scott M, Atkins GJ, Findlay DM, Zheng TS, Hess H (2006) TWEAK is a novel arthritogenic mediator. J Immunol 177(4):2610–2620

    CAS  PubMed  Google Scholar 

  19. Kamata K, Kamijo S, Nakajima A, Koyanagi A, Kurosawa H, Yagita H, Okumura K (2006) Involvement of TNF-like weak inducer of apoptosis in the pathogenesis of collagen-induced arthritis. J Immunol 177(9):6433–6439

    CAS  PubMed  Google Scholar 

  20. Vincent C, Findlay DM, Welldon KJ, Wijenayaka AR, Zheng TS, Haynes DR, Fazzalari NL, Evdokiou A, Atkins GJ (2009) Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. J Bone Miner Res 24(8):1434–1449

    Article  CAS  PubMed  Google Scholar 

  21. Atkins GJ, Anderson PH, Findlay DM, Welldon KJ, Vincent C, Zannettino AC, O’Loughlin P D, Morris HA (2007) Metabolism of vitamin D(3) in human osteoblasts: Evidence for autocrine and paracrine activities of 1alpha,25-dihydroxyvitamin D(3). Bone 40(6):1517–1528

    Article  CAS  PubMed  Google Scholar 

  22. Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171(1):131–137

    Article  CAS  PubMed  Google Scholar 

  23. Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99(5):1233–1239

    Article  CAS  PubMed  Google Scholar 

  24. Galindo M, Pratap J, Young DW, Hovhannisyan H, Im HJ, Choi JY, Lian JB, Stein JL, Stein GS, van Wijnen AJ (2005) The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J Biol Chem 280(21):20274–20285

    Article  CAS  PubMed  Google Scholar 

  25. Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA, Choi JY, Komori T, Stein JL, Lian JB, Stein GS, van Wijnen AJ (2003) Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 63(17):5357–5362

    CAS  PubMed  Google Scholar 

  26. Kim YJ, Kim HN, Park EK, Lee BH, Ryoo HM, Kim SY, Kim IS, Stein JL, Lian JB, Stein GS, van Wijnen AJ, Choi JY (2006) The bone-related Zn finger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene 366(1):145–151

    Article  CAS  PubMed  Google Scholar 

  27. Boyce BF, Li P, Yao Z, Zhang Q, Badell IR, Schwarz EM, O’Keefe RJ, Xing L (2005) TNF-alpha and pathologic bone resorption. Keio J Med 54(3):127–131

    Article  CAS  PubMed  Google Scholar 

  28. Baron R, Rawadi G, Roman-Roman S (2006) Wnt signaling: a key regulator of bone mass. Curr Top Dev Biol 76:103–127

    Article  CAS  PubMed  Google Scholar 

  29. Ott SM (2005) Sclerostin and Wnt signaling–the pathway to bone strength. J Clin Endocrinol Metab 90(12):6741–6743

    Article  PubMed  Google Scholar 

  30. Walsh NC, Reinwald S, Manning CA, Condon KW, Iwata K, Burr DB, Gravallese EM (2009) Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res 24(9):1572–1585

    Article  CAS  PubMed  Google Scholar 

  31. Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. Faseb J 19(13):1842–1844

    CAS  PubMed  Google Scholar 

  32. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869

    Article  PubMed  Google Scholar 

  33. van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M, Quax PH, Vrieling H, Papapoulos SE, ten Dijke P, Lowik CW (2007) Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res 22(1):19–28

    Article  PubMed  Google Scholar 

  34. Atkins GJ, Welldon KJ, Halbout P, Findlay DM (2009) Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int 20(4):653–664

    Article  CAS  PubMed  Google Scholar 

  35. Barragan-Adjemian C, Nicolella D, Dusevich V, Dallas MR, Eick JD, Bonewald LF (2006) Mechanism by which MLO-A5 late osteoblasts/early osteocytes mineralize in culture: similarities with mineralization of lamellar bone. Calcif Tissue Int 79(5):340–353

    Article  CAS  PubMed  Google Scholar 

  36. Chan A, van Bezooijen RL, Lowik CW (2007) A new paradigm in the treatment of osteoporosis: Wnt pathway proteins and their antagonists. Curr Opin Investig Drugs 8(4):293–298

    CAS  PubMed  Google Scholar 

  37. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):156–163

    Article  CAS  PubMed  Google Scholar 

  38. Polek TC, Talpaz M, Darnay BG, Spivak-Kroizman T (2003) TWEAK mediates signal transduction and differentiation of RAW264.7 cells in the absence of Fn14/TweakR. Evidence for a second TWEAK receptor. J Biol Chem 278(34):32317–32323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the contributions to this work by the co-authors of our recent publication [20]. We continue to be extremely grateful to the surgeons and nursing staff of the Department of Orthopaedics and Trauma, Royal Adelaide Hospital. This work was supported by the National Health and Medical Research Council of Australia (NHMRC). GJA was supported by a NHMRC R Douglas Wright Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald J. Atkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Findlay, D.M., Atkins, G.J. (2011). TWEAK and TNF Regulation of Sclerostin: A Novel Pathway for the Regulation of Bone Remodelling. In: Wallach, D., Kovalenko, A., Feldmann, M. (eds) Advances in TNF Family Research. Advances in Experimental Medicine and Biology, vol 691. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6612-4_34

Download citation

Publish with us

Policies and ethics