Skip to main content

TNF-α and TNFR in Chagas Disease: From Protective Immunity to Pathogenesis of Chronic Cardiomyopathy

  • Conference paper
  • First Online:
Book cover Advances in TNF Family Research

Abstract

American trypanosomiasis or Chagas disease (CD), discovered in 1909 by the Brazilian physician Carlos Chagas, is a vector-borne complex disease caused by the haemoflagellate protozoan parasite Trypanosoma cruzi [1]. One hundred years after its discovery, CD is still epidemiologically relevant, afflicting 12–14 million neglected individuals in 18 endemic countries in Latin America, as well as in non-endemic countries in North America, Europe, and Asia [2, 3]. In the last three decades, governmental initiatives targeting the main vector in endemic areas resulted in successful decline of the incidence of acute infection. For instance, in Brazil, the numbers of acute infection dropped from more than 100,000 new cases/year during the 1980s to less than 500 new cases/year during 2001–2006 [2, 4]. However, the current epidemiological data indicate that we must devote our efforts and agenda to the implementation of sustainable policies for CD control. These measures should incorporate guaranteeing access to the trypanocidal treatment and therapies required by patients, particularly pregnant women and children, developing new drugs and therapeutic strategies, identifying progression markers, as well as elucidating pathogenic mechanisms leading to the distinct clinical forms of CD [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chagas CRJ (1909) Nova tripanosomiase humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n.g., n.sp., agente etiológico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218

    Google Scholar 

  2. Schmunis GA (2007) Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem Inst Oswaldo Cruz 102 (Suppl. I):75–85

    PubMed  Google Scholar 

  3. Dias JC (2009) Elimination of transmission in Chagas disease: perspectives. Mem Inst Oswaldo Cruz 104 (Suppl. I):41–45

    PubMed  Google Scholar 

  4. Lannes-Vieira J, Soeiro Mde N, Corrêa-Oliveira R, de Araújo-Jorge TC (2009) Chagas disease centennial anniversary celebration: historical overview and prospective proposals aiming to maintain vector control and improve patient prognosis – a permanent challenge. Mem Inst Oswaldo Cruz 104 (Suppl I):5–7

    PubMed  Google Scholar 

  5. Higuchi Mde L, Benvenuti LA, Martins Reis M, Metzger M (2003) Pathophysiology of the heart in Chagas’ disease: current status and new developments. Cardiovasc Res 60:96–107

    Article  PubMed  Google Scholar 

  6. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV (2007) Pathogenesis of chronic Chagas heart disease. Circulation 115:1109–1123

    Article  PubMed  Google Scholar 

  7. Freitas HF, Chizzola PR, Paes AT, Lima AC, Mansur AJ (2005) Risk stratification in a Brazilian hospital-based cohort of 1220 outpatients with heart failure: role of Chagas’ heart disease. Int J Cardiol 102:239–247

    Article  PubMed  Google Scholar 

  8. Lannes-Vieira J, Silverio JC, Resende-Pereira I, Vinagre NF, Carvalho CE, Paica CN, Silva AA (2009) Chronic Trypanosoma cruzi-elicited cardiomyopathy: from the genesis to the proposal of rational therapeutic interventions targeting cell adhesion molecules and chemokine receptors - how to make a dream come true. Mem Inst Oswaldo Cruz 104 (Suppl. I):226–235

    CAS  PubMed  Google Scholar 

  9. Chagas CRJ das (1916) Processos patogênicos da tripanossomíase americana. Mem Inst Oswaldo Cruz 8:5–35

    Article  Google Scholar 

  10. Laranja FS, Dias E, Nobrega GC, Miranda A (1956) Chagas’ disease. A clinical, epidemiologic, and pathologic study. Circulation 14:1035–1060

    PubMed  Google Scholar 

  11. Higuchi MD, Reis MM, Aiello VD, Benvenuti LA, Gutierrez PS, Bellotti G, Pileggi F (1997) Association of an increase in CD8+ T cells with the presence of Trypanosoma cruzi antigens in chronic, human, chagasic myocarditis. Am J Trop Med Hyg 56:485–489

    CAS  PubMed  Google Scholar 

  12. Reis DD, Jones EM, Tostes S Jr, Lopes ER, Gazzinelli G, Colley DG, McCurley TL (1993) Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-alpha+ cells and dominance of granzyme A+, CD8+ lymphocytes. Am J Trop Med Hyg 48:637–644

    CAS  PubMed  Google Scholar 

  13. dos Santos PV, Roffê E, Santiago HC, Torres RA, Marino AP, Paiva CN, Silva AA, Gazzinelli RT, Lannes-Vieira J (2001). Prevalence of CD8(+) alpha beta T cells in Trypanosoma cruzi-elicited myocarditis is associated with acquisition of CD62L(Low)LFA-1(High)VLA-4(High) activation phenotype and expression of IFN-gamma-inducible adhesion and chemoattractant molecules. Microbes Infect 3:971–984

    Article  CAS  PubMed  Google Scholar 

  14. Lima ECS, Garcia I, Vicentelli MH, Vassalli P, Minoprio P (1997) Evidence for a protective role of tumor necrosis factor in the acute phase of Trypanosoma cruzi infection in mice. Infect Immun 65:457–465

    CAS  PubMed  Google Scholar 

  15. Aliberti JC, Souto JT, Marino AP, Lannes-Vieira J, Teixeira MM, Farber J, Gazzinelli RT, Silva JS (2001) Modulation of chemokine production and inflammatory responses in interferon-gamma- and tumor necrosis factor-R1-deficient mice during Trypanosoma cruzi infection. Am J Pathol 158:1433–1440

    CAS  PubMed  Google Scholar 

  16. D’avila Reis D, Jones EM, Tostes Jr S, Lopes ER, Gazzinelli G, Colley DG, Mc Curley TL (1993) Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-α+ cells and dominance of granzyme A+, CD8+ lymphocytes. Am J Trop Med Hyg 48:637–644

    Google Scholar 

  17. Abel LC, Rizzo LV, Ianni B, Albuquerque F, Bacal F, Carrara D, Bocchi EA, Teixeira HC, Mady C, Kalil J, Cunha-Neto E (2001) Chronic Chagas’ disease cardiomyopathy patients display an increased IFN-gamma response to Trypanosoma cruzi infection. J Autoimmun 17:99–107

    Article  CAS  PubMed  Google Scholar 

  18. Kroll-Palhares K, Silverio JC, Silva AA, Michailowsky V, Marino AP, Silva NM, Carvalho CM, Pinto LM, Gazzinelli RT, Lannes-Vieira J (2008) TNF/TNFR1 signaling up-regulates CCR5 expression by CD8+ T lymphocytes and promotes heart tissue damage during Trypanosoma cruzi infection: beneficial effects of TNF-alpha blockade. Mem Inst Oswaldo Cruz 103:375–385

    Article  PubMed  Google Scholar 

  19. Pena SDJ, Machado CR, Macedo AM. Trypanosoma cruzi: ancestral genomes and population structure. Mem Inst Oswaldo Cruz 104 (Suppl I):108–114

    Google Scholar 

  20. Zicker F, Smith PG, Netto JC, Oliveira RM, Zicker EM (1990) Physical activity, opportunity for reinfection, and sibling history of heart disease as risk factors for Chagas’ cardiopathy. Am J Trop Med Hyg 43:498–505

    CAS  PubMed  Google Scholar 

  21. Ferreira RC, Ianni BM, Abel LC, Buck P, Mady C, Kalil J, Cunha-Neto E (2003) Increased plasma levels of tumor necrosis factor-alpha in asymptomatic/“indeterminate” and Chagas disease cardiomyopathy patients. Mem Inst Oswaldo Cruz 98:407–411

    CAS  PubMed  Google Scholar 

  22. Perez-Fuentes R, Guegan JF, Barnabe C, Lopez-Colombo A, Salgado-Rosas H, Torres-Rasgado E, Briones B, Romero-Diaz M, Ramos-Jimenez J, Sanchez-Guillen M del C (2003) Severity of chronic Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Int J Parasitol 33:293–299

    Article  CAS  PubMed  Google Scholar 

  23. Talvani A, Rocha MO, Barcelos LS, Gomes YM, Ribeiro AL, Teixeira MM (2004) Elevated concentrations of CCL2 and tumor necrosis factor-alpha in chagasic cardiomyopathy. Clin Infect Dis 38:943–950

    Article  CAS  PubMed  Google Scholar 

  24. Beraun Y, Nieto A, Collado MD, Gonzalez A, Martin J (1998) Polymorphisms at tumor necrosis factor (TNF) loci are not associated with Chagas’ disease. Tissue Antigens 52:81–83

    Article  CAS  PubMed  Google Scholar 

  25. Kroeger KM, Carville KS, Abraham LJ (1997) The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol 34:391–399

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez-Perez JM, Cruz-Robles D, Hernandez-Pacheco G, Perez-Hernandez N, Murguia LE, Granados J, Reyes PA, Vargas-Alarcon G (2005) Tumor necrosis factor-alpha promoter polymorphism in Mexican patients with Chagas’ disease. Immunol Lett 98:97–102

    Article  CAS  PubMed  Google Scholar 

  27. Pociot F, Briant L, Jongeneel CV, Mölvig J, Worsaae H, Abbal M, Thomsen M, Nerup J, Cambon-Thomsen A (1993) Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. Eur J Immunol 23:224–231

    Article  CAS  PubMed  Google Scholar 

  28. Drigo SA, Cunha-Neto E, Ianni B, Cardoso MR, Braga PE, Fae KC, Nunes VL, Buck P, Mady C, Kalil J, Goldberg AC (2006) TNF gene polymorphisms are associated with reduced survival in severe Chagas’ disease cardiomyopathy patients. Microbes Infect 8:598–603

    Article  CAS  PubMed  Google Scholar 

  29. Campelo V, Dantas RO, Simões RT, Mendes-Junior CT, Sousa SM, Simões AL, Donadi EA (2007) TNF microsatellite alleles in Brazilian Chagasic patients. Dig Dis Sci 52:3334–3339

    Article  CAS  PubMed  Google Scholar 

  30. Drigo SA, Cunha-Neto E, Ianni B, Mady C, Faé KC, Buck P, Kalil J, Goldberg AC (2007) Lack of association of tumor necrosis factor-alpha polymorphisms with Chagas disease in Brazilian patients. Immunol Lett 108:109–111

    Article  CAS  PubMed  Google Scholar 

  31. Ramasawmy R, Cunha-Neto E, Faé KC, Müller NG, Cavalcanti VL, Drigo SA, Ianni B, Mady C, Kalil J, Goldberg AC (2006) BAT1, a putative anti-inflammatory gene, is associated with chronic Chagas cardiomyopathy. J Infect Dis. 193:1394–1399

    Article  CAS  PubMed  Google Scholar 

  32. Ramasawmy R, Fae KC, Cunha-Neto E, Müller NG, Cavalcanti VL, Ferreira RC, Drigo SA, Ianni B, Mady C, Goldberg AC, Kalil J (2007) Polymorphisms in the gene for lymphotoxin-alpha predispose to chronic Chagas cardiomyopathy. J Infect Dis 196:1836–1843

    Article  CAS  PubMed  Google Scholar 

  33. Starobinas N, Russo M, Minoprio P, Hontebeyrie-Joskowicz M (1991) Is TNF alpha involved in early susceptibility of Trypanosoma cruzi-infected C3H/He mice? Res Immunol 142:117–122

    Article  CAS  PubMed  Google Scholar 

  34. Campos MA, Gazzinelli RT (2004) Trypanosoma cruzi and its components as exogenous mediators of inflammation recognized through Toll-like receptors. Mediators Inflamm 13:139–143

    Article  CAS  PubMed  Google Scholar 

  35. Aggarwal BB, Shishodia S, Ashikawa K, Bharti AC (2002) The role of TNF and its family members in inflammation and cancer: lessons from gene deletion. Curr Drug Targets Inflamm Allergy 1:327–341

    Article  CAS  PubMed  Google Scholar 

  36. Brener Z, Gazzinelli RT (1997) Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas’ disease. Int Arch Allergy Immunol 114:103–110

    Google Scholar 

  37. Silva JS, Machado FS, Martins GA (2003) The role of nitric oxide in the pathogenesis of Chagas disease. Front Biosci 8:s314–325

    Article  CAS  PubMed  Google Scholar 

  38. De Titto EH, Catterall JR, Remington JS (1986) Activity of recombinant tumor necrosis factor on Toxoplasma gondii and Trypanosoma cruzi. J Immunol 137, 1342–1345, 1986.

    PubMed  Google Scholar 

  39. Black CM, Israelski DM, Suzuki Y, Remington JS (1989) Effect of recombinant tumour necrosis factor on acute infection in mice with Toxoplasma gondii or Trypanosoma cruzi. Immunol 68:570–474

    CAS  Google Scholar 

  40. Truyens C, Torrico F, Angelo-Barrios A, Lucas R, Heremans H, De Baetselier P, Carlier Y (1995) The cachexia associated with Trypanosoma cruzi acute infection in mice is attenuated by anti-TNF-alpha, but not by anti-IL-6 or anti-IFN-gamma antibodies. Parasite Immunol 17:561–568

    Article  CAS  PubMed  Google Scholar 

  41. Lima ES, Andrade ZA, Andrade SG (2001) TNF-alpha is expressed at sites of parasite and tissue destruction in the spleen of mice acutely infected with Trypanosoma cruzi. Int J Exp Pathol 82:327–336

    Article  CAS  PubMed  Google Scholar 

  42. Paiva CN, Arras RH, Lessa LP, Gibaldi D, Alves L, Metz CN, Gazzinelli R, Pyrrho AS, Lannes-Vieira J, Bozza MT (2007) Unraveling the lethal synergism between Trypanosoma cruzi infection and LPS: a role for increased macrophage reactivity. Eur J Immunol 37:1355–1364

    Article  CAS  PubMed  Google Scholar 

  43. Castaños-Velez E, Maerlan S, Osorio LM, Aberg F, Biberfeld P, Orn A, Rottenberg ME (1998) Trypanosoma cruzi infection in tumor necrosis factor receptor p55-deficient mice. Infect Immun 66:2960–2968

    PubMed  Google Scholar 

  44. Lima CES, Garcia I, Vicentelli MH, Vassalli P, Minoprio P (1997) Evidence for a protective role of tumor necrosis factor in the acute phase of Trypanosoma cruzi infection in mice. Infect Immun 65:457–465

    CAS  PubMed  Google Scholar 

  45. Michailowsky V, Silva NM, Rocha CD, Vieira LQ, Lannes-Vieira J, Gazzinelli RT (2001) Pivotal role of interleukin-12 and interferon-gamma axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. Am J Pathol 159:1723–1733

    CAS  PubMed  Google Scholar 

  46. Minoprio P (2001) Parasite polyclonal activators: new targets for vaccination approaches? Int J Parasitol 31:588–591

    Article  CAS  PubMed  Google Scholar 

  47. Tzelepis F, Persechini PM, Rodrigues MM (2007) Modulation of CD4+ T cell-dependent specific cytotoxic CD8+ T cells differentiation and proliferation by the timing of increase in the pathogen load. PLoS ONE 2:e393

    Article  PubMed  Google Scholar 

  48. Michailowsky V, Celes MR, Marino AP, Silva AA, Vieira LQ, Rossi MA, Gazzinelli RT, Lannes-Vieira J, Silva JS (2004) Intercellular adhesion molecule 1 deficiency leads to impaired recruitment of T lymphocytes and enhanced host susceptibility to infection with Trypanosoma cruzi. J Immunol 173:463–470

    CAS  PubMed  Google Scholar 

  49. Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274:R577–595

    CAS  PubMed  Google Scholar 

  50. Shaw SM, Shah MKH, Willians SG, Filders JE (2009) Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail 11:113–118

    Article  CAS  PubMed  Google Scholar 

  51. Machado FS, Martins GA, Aliberti JC, Mestriner FL, Cunha FQ, Silva JS (2000) Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity.  Circulation 102:3003–3008

    CAS  PubMed  Google Scholar 

  52. Marino AP, da Silva A, dos Santos P, Pinto LM, Gazzinelli RT, Teixeira MM, Lannes-Vieira J (2004) Regulated on activation, normal T cell expressed and secreted (RANTES) antagonist (Met-RANTES) controls the early phase of Trypanosoma cruzi-elicited myocarditis. Circulation 110:1443–1449

    Article  CAS  PubMed  Google Scholar 

  53. Medeiros GA, Silvério JC, Marino AP, Roffê E, Vieira V, Kroll-Palhares K, Carvalho CE, Silva AA, Teixeira MM, Lannes-Vieira J (2009) Treatment of chronically Trypanosoma cruzi-infected mice with a CCR1/CCR5 antagonist (Met-RANTES) results in amelioration of cardiac tissue damage. Microbes Infect 11:264–273

    Article  CAS  PubMed  Google Scholar 

  54. Machado FS, Koyama NS, Carregaro V, Ferreira BR, Milanezi CM, Teixeira MM, Rossi MA, Silva JS (2005) CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. J Infect Dis 191:627–636

    Article  CAS  PubMed  Google Scholar 

  55. Wong M, Ziring D, Korin Y, Desai S, Kim S, Lin J, Gjertson D, Braun J, Reed E, Singh RR (2008) TNF alpha blockade in human diseases: mechanisms and future directions. Clin Immunol 126:121–136

    Article  CAS  PubMed  Google Scholar 

  56. Pérez AR, Fontanella GH, Nocito AL, Revelli S, Bottasso OA (2009) Short treatment with the tumour necrosis factor-alpha blocker infliximab diminishes chronic chagasic myocarditis in rats without evidence of Trypanosoma cruzi reactivation. Clin Exp Immunol 157:291–299

    Article  PubMed  Google Scholar 

  57. Huang H, Chan J, Wittner M, Jelicks LA, Morris SA, Factor SM, Weiss LM, Braunstein VL, Bacchi CJ, Yarlett N, Chandra M, Shirani J, Tanowitz HB (1999) Expression of cardiac cytokines and inducible form of nitric oxide synthase (NOS2) in Trypanosoma cruzi-infected mice. J Mol Cell Cardiol. 31:75–88

    Article  CAS  PubMed  Google Scholar 

  58. Andrade SG, Magalhaes LA, Pessina DH (2008) Importance of TNF-α in the course of acute infection with Trypanosoma cruzi: influence of its inhibition by pentoxiflyline treatment. Mem Inst Oswaldo Cruz 103:21–26

    CAS  PubMed  Google Scholar 

  59. Bilate AM, Salemi VM, Ramires FJ, de Brito T, Russo M, Fonseca SG, Faé KC, Martins DG, Silva AM, Mady C, Kalil J, Cunha-Neto E (2007) TNF blockade aggravates experimental chronic Chagas disease cardiomyopathy. Microbes Infect 9:1104–1113

    Article  CAS  PubMed  Google Scholar 

  60. Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL (2000) Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA 97:5456–5461

    Article  CAS  PubMed  Google Scholar 

  61. Sarzi-Puttini P, Atzeni F, Doria A, Iaccarino L, Turiel M (2005) Tumor necrosis factor-alpha, biologic agents and cardiovascular risk. Lupus 14:780–784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from CNPq, FAPERJ, DECIT/MS/CNPq/MCT, INCT/CNPq, and fellowship from CNPq

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseli Lannes-Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Lannes-Vieira, J., Pereira, I.R., Vinagre, N.F., Arnez, L.E.A. (2011). TNF-α and TNFR in Chagas Disease: From Protective Immunity to Pathogenesis of Chronic Cardiomyopathy. In: Wallach, D., Kovalenko, A., Feldmann, M. (eds) Advances in TNF Family Research. Advances in Experimental Medicine and Biology, vol 691. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6612-4_23

Download citation

Publish with us

Policies and ethics