MRI to Assess Vascular Disruptive Agents



A number of clinically applicable imaging techniques are able to assess the antivascular effects of antiangiogenic drugs and vascular disruptive agents (VDAs) via changes induced in functional kinetic parameters. These techniques include dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), dynamic susceptibility enhanced MRI, diffusion MRI, positron emission tomography (PET) with oxygen labelled water, perfusion/functional computed tomography (CT) and microbubble enhanced ultrasound. Each of these techniques yield quantitative or semi-quantitative kinetic parameters which can be related to blood flow, blood volume, extraction fraction, and vessel permeability. Changes in some of these imaging biomarkers can be used during the drug development process because they can serve as pharmacodynamic indicators of vascular activity in vivo. In this chapter, we discuss imaging techniques for the assessment of tumour vascularity that have been used to assess VDAs in clinical studies, with an emphasis on magnetic resonance imaging (MRI) methods.


Positron Emission Tomography Maximum Tolerate Dose Arterial Input Function Dynamic Magnetic Resonance Imaging Antiangiogenic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akerley, W. L., M. Schabel, et al. (2007). A randomized phase 2 trial of combretatstatin A4 phosphate (CA4P) in combination with paclitaxel and carboplatin to evaluate safety and efficacy in subjects with advanced imageable malignancies.” J Clin Oncol, ASCO Annual Meeting Proceedings Part I 25(18S): 14060.Google Scholar
  2. Anderson, H. L., J. T. Yap, et al. (2003). “Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate.” J Clin Oncol 21(15): 2823–30.PubMedCrossRefGoogle Scholar
  3. Baar, J., P. Silverman, et al. (2009). “A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer: impact on angiogenic biomarkers.” Clin Cancer Res 15(10): 3583–90.PubMedCrossRefGoogle Scholar
  4. Batchelor, T. T., A. G. Sorensen, et al. (2007). “AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients.” Cancer Cell 11(1): 83–95.PubMedCrossRefGoogle Scholar
  5. Beauregard, D. A., S. A. Hill, et al. (2001). “The susceptibility of tumors to the antivascular drug combretastatin A4 phosphate correlates with vascular permeability.” Cancer Res 61(18): 6811–5.PubMedGoogle Scholar
  6. Beauregard, D. A., R. B. Pedley, et al. (2002). “Differential sensitivity of two adenocarcinoma xenografts to the anti-vascular drugs combretastatin A4 phosphate and 5,6-dimethylxanthenone-4-acetic acid, assessed using MRI and MRS.” NMR Biomed 15(2): 99–105.PubMedCrossRefGoogle Scholar
  7. Beauregard, D. A., P. E. Thelwall, et al. (1998). “Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status.” Br J Cancer 77: 1761–7.PubMedCrossRefGoogle Scholar
  8. Benjamin, R. S., H. Choi, et al. (2007). “We should desist using RECIST, at least in GIST.” J Clin Oncol 25(13): 1760–4.PubMedCrossRefGoogle Scholar
  9. Bilenker, J. H., K. T. Flaherty, et al. (2005). “Phase I trial of combretastatin a-4 phosphate with carboplatin.” Clin Cancer Res 11(4): 1527–33.PubMedCrossRefGoogle Scholar
  10. Buckley, D. L. (2002a). “Transcytolemmal water exchange and its affect on the determination of contrast agent concentration in vivo.” Magn Reson Med 47(2): 420–4.PubMedCrossRefGoogle Scholar
  11. Buckley, D. L. (2002b). “Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI.” Magn Reson Med 47(3): 601–6.PubMedCrossRefGoogle Scholar
  12. Chaplin, D. J., G. R. Pettit, et al. (1999). “Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate.” Anticancer Res 19(1A): 189–95.PubMedGoogle Scholar
  13. Conrad, C., H. Friedman, et al. (2004). “A phase I/II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM).” J Clin Oncol (Meeting Abstracts) 22(14 (suppl)): 1512.Google Scholar
  14. Dowlati, A., K. Robertson, et al. (2002). “A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin A-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer.” Cancer Res 62(June 15): 3408–16.PubMedGoogle Scholar
  15. Dowlati, A., K. Robertson, et al. (2005). “Novel Phase I dose de-escalation design trial to determine the biological modulatory dose of the antiangiogenic agent SU5416.” Clin Cancer Res 11(21): 7938–44.PubMedCrossRefGoogle Scholar
  16. Drevs, J., M. Medinger, et al. (2005). “Phase I clinical evaluation of AZD2171, a highly potent VEGF receptor tyrosine kinase inhibitor, in patients with advanced tumors.” J Clin Oncol, 2005 ASCO Annual Meeting Proceedings 23(16S): 3002.Google Scholar
  17. Eby, P. R., S. C. Partridge, et al. (2008). “Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and (15)O-water positron emission tomography blood flow in breast cancer.” Acad Radiol 15(10): 1246–54.PubMedCrossRefGoogle Scholar
  18. Evelhoch, J., P. LoRusso, et al. (2002). Dynamic contrast-enhanced MRI evaluation of the effects of ZD6126 on tumor vasculature in a phase I clinical trial. Proc. ISMRM, Honolulu, Hawaii.Google Scholar
  19. Evelhoch, J. L., P. M. LoRusso, et al. (2004). “Magnetic resonance imaging measurements of the response of murine and human tumors to the vascular-targeting agent ZD6126.” Clin Cancer Res 10(11): 3650–7.PubMedCrossRefGoogle Scholar
  20. Ferrara, K. W., C. R. Merritt, et al. (2000). “Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents.” Acad Radiol 7(10): 824–39.PubMedCrossRefGoogle Scholar
  21. Ferrier, M. C., H. Sarin, et al. (2007). “Validation of dynamic contrast-enhanced magnetic resonance imaging-derived vascular permeability measurements using quantitative autoradiography in the RG2 rat brain tumor model.” Neoplasia 9(7): 546–55.PubMedCrossRefGoogle Scholar
  22. Galbraith, S. M., R. J. Maxwell, et al. (2003). “Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging.” J Clin Oncol 21(15): 2831–42.PubMedCrossRefGoogle Scholar
  23. Galbraith, S. M., G. J. Rustin, et al. (2002). “Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging.” J Clin Oncol 20(18): 3826–40.PubMedCrossRefGoogle Scholar
  24. Hahn, O. M., C. Yang, et al. (2008). “Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma.” J Clin Oncol 26(28): 4572–8.PubMedCrossRefGoogle Scholar
  25. Jain, R. K. (2001). “Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy.” Nat Med 7(9): 987–9.PubMedCrossRefGoogle Scholar
  26. Jayson, G. C., J. Zweit, et al. (2002). “Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies.” J Natl Cancer Inst 94(19): 1484–93.PubMedCrossRefGoogle Scholar
  27. Jonker, D. J., L. S. Rosen, et al. (2007). “A phase I study of BMS-582664 (brivanib alaninate), an oral dual inhibitor of VEGFR and FGFR tyrosine kinases, in patients (pts) with advanced/metastatic solid tumors: Safety, pharmacokinetic (PK), and pharmacodynamic (PD) findings.” Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I 25(18S (June 20 Supplement)): Abstract 3559.PubMedGoogle Scholar
  28. Kamoun, W. S., C. D. Ley, et al. (2009). “Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice.” J Clin Oncol 27(15): 2542–52.PubMedCrossRefGoogle Scholar
  29. Kanthou, C. and G. M. Tozer (2002). “The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells.” Blood 99(6): 2060–69.PubMedCrossRefGoogle Scholar
  30. Kety, S. (1960a). “Blood-tissue exchange methods. Theory of blood-tissue exchange and its application to measurement of blood flow.” Meth Med Res 8: 223–27.Google Scholar
  31. Kety, S. (1960b). “Measurement of local blood flow by the exchange of an inert, diffusible substance.” Methods Med Res 8: 228–36.Google Scholar
  32. Landis, C. S., X. Li, et al. (2000). “Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange.” Magn Reson Med 44(4): 563–74.PubMedCrossRefGoogle Scholar
  33. Lankester, K. J., R. J. Maxwell, et al. (2007a). “Combretastatin A-4-phosphate effectively increases tumor retention of the therapeutic antibody, 131I-A5B7, even at doses that are sub-optimal for vascular shut-down.” Int J Oncol 30(2): 453–60.PubMedGoogle Scholar
  34. Lankester, K. J., J. N. Taylor, et al. (2007b). “Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors.” J Magn Reson Imaging 25(4): 796–805.PubMedCrossRefGoogle Scholar
  35. Lankester, K. J., N. J. Taylor, et al. (2005). “Effects of platinum/taxane based chemotherapy on acute perfusion in human pelvic tumours measured by dynamic MRI.” Br J Cancer 93(9): 979–85.PubMedCrossRefGoogle Scholar
  36. Leach MO, Brindle KM, et al. (2005). “The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations.” Br J Cancer 92: 1599–1610.PubMedCrossRefGoogle Scholar
  37. Liu G, Rugo HS, et al. (2005). “Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study.” J Clin Oncol 23(24): 5464–73.Google Scholar
  38. LoRusso, P. M., S. M. Gadgeel, et al. (2008). “Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors.” Invest New Drugs 26(2): 159–67.PubMedCrossRefGoogle Scholar
  39. Mandeville, H. C., V. Goh, et al. (2008). “Volumetric perfusion CT assessment of concurrent combretastatin-A4-phosphate (CA4P) and radiotherapy (RT) in non-small cell lung cancer.” J Clin Oncol 26(May 20 suppl): abstr 14517.Google Scholar
  40. Maxwell, R. J., J. Wilson, et al. (2002). “Evaluation of the anti-vascular effects of combretastatin in rodent tumours by dynamic contrast enhanced MRI.” NMR Biomed 15(2): 89–98.PubMedCrossRefGoogle Scholar
  41. McKeage, M. J., P. Fong, et al. (2006). “5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent.” Clin Cancer Res 12(6): 1776–84.PubMedCrossRefGoogle Scholar
  42. McPhail, L. D., D. J. McIntyre, et al. (2006). “Rat tumor response to the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid as measured by dynamic contrast-enhanced magnetic resonance imaging, plasma 5-hydroxyindoleacetic acid levels, and tumor necrosis.” Neoplasia 8(3): 199–206.PubMedCrossRefGoogle Scholar
  43. Medved, M., G. Karczmar, et al. (2004). “Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: variability and changes in tumor tissue over time.” J Magn Reson Imaging 20(1): 122–8.PubMedCrossRefGoogle Scholar
  44. Meyer, T., A. M. Gaya, et al. (2009). “A phase I trial of radioimmunotherapy with 131I-A5B7 anti-CEA antibody in combination with combretastatin-A4-phosphate in advanced gastrointestinal carcinomas.” Clin Cancer Res 15(13): 4484–92.Google Scholar
  45. Miles, K. A. and R. E. Williams (2008). “Warburg revisited: imaging tumour blood flow and metabolism.” Cancer Imaging 8: 81–6.PubMedCrossRefGoogle Scholar
  46. Morgan, B., A. L. Thomas, et al. (2003). “Dynamic contrast-enhanced magnetic resonance ­imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies.” J Clin Oncol 21(21): 3955–64.PubMedCrossRefGoogle Scholar
  47. Mross, K., J. Drevs, et al. (2005a). “Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours.” Eur J Cancer 41(9): 1291–9.PubMedCrossRefGoogle Scholar
  48. Mross, K. B., D. Gmehling, et al. (2005b). A clinical phase I, pharmacokinetic (PK), and pharmacodynamic study of twice daily BIBF 1120 in advanced cancer patients. J Clin Oncol (Meeting Abstracts).PubMedGoogle Scholar
  49. Murata, R., J. Overgaard, et al. (2001). “Comparative effects of combretastatin A-4 disodium phosphate and 5,6- dimethylxanthenone-4-acetic acid on blood perfusion in a murine tumour and normal tissues.” Int J Radiat Biol 77(2): 195–204.PubMedCrossRefGoogle Scholar
  50. Nathan, P., I. Judson, et al. (2008). “A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors.” J Clin Oncol 26(May 20 suppl): 3550.Google Scholar
  51. Ng, Q. S., V. Goh, et al. (2007). “Tumor antivascular effects of radiotherapy combined with combretastatin a4 phosphate in human non-small-cell lung cancer.” Int J Radiat Oncol Biol Phys 67(5): 1375–80.PubMedCrossRefGoogle Scholar
  52. Niermann, K. J., A. C. Fleischer, et al. (2007). “Measuring tumor perfusion in control and treated murine tumors: correlation of microbubble contrast-enhanced sonography to dynamic contrast-enhanced magnetic resonance imaging and fluorodeoxyglucose positron emission tomography.” J Ultrasound Med 26(6): 749–56.PubMedGoogle Scholar
  53. O’Donnell, A., A. Padhani, et al. (2005). “A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points.” Br J Cancer 93(8): 876–83.PubMedCrossRefGoogle Scholar
  54. O’Dwyer, P. J., M. Rosen, et al. (2005). “Pharmacodynamic study of BAY 43-9006 in patients with metastatic renal cell carcinoma.” J Clin Oncol (Meeting Abstracts) 23(16 (suppl)): 3005.Google Scholar
  55. Oostendorp, M., M. J. Post, et al. (2009). “Vessel growth and function: depiction with contrast-enhanced MR imaging.” Radiology 251(2): 317–35.PubMedCrossRefGoogle Scholar
  56. Overmoyer, B., P. Silverman, et al. (2004). “Phase II trial of neoadjuvant docetaxel with or without bevacizumab in patients with locally advanced breast cancer.” J Clin Oncol, 2004 ASCO Annual Meeting Proceedings (Post-Meeting Edition) 22(14S (supplement)): Abstract 727.Google Scholar
  57. Padhani, A. R. and A. Dzik-Jurasz (2004). “Perfusion MR imaging of extracranial tumor angiogenesis.” Top Magn Reson Imaging 15(1): 41–57.PubMedCrossRefGoogle Scholar
  58. Padhani, A. R., N. J. Taylor, et al. (2006). “Dynamic MRI evaluation of the triple receptor tyrosine kinase inhibitor BIBF 1120 in patients with advanced solid tumours.” Proc Intl Soc Magn Reson Med 14: 765.PubMedGoogle Scholar
  59. Patterson, D. M., N. Charnley, et al. (2008). “Phase I evaluation of vascular disrupting agent OXi4503.” J Clin Oncol 26(May 20 suppl): abstract 3551.Google Scholar
  60. Patterson, D. M., P. Ross, et al. (2007). “Phase I evaluation of OXi4503, a vascular disrupting agent, in patients with advanced solid tumours.” J Clin Oncol (Meeting Abstracts) 25(18 suppl): 14146.Google Scholar
  61. Prise, V. E., D. J. Honess, et al. (2002). “The vascular response of tumor and normal tissues in the rat to the vascular targeting agent, combretastatin A-4-phosphate, at clinically relevant doses.” Int J Oncol 21(4): 717–26.PubMedGoogle Scholar
  62. Robinson, S. P., D. J. McIntyre, et al. (2003). “Tumour dose response to the antivascular agent ZD6126 assessed by magnetic resonance imaging.” Br J Cancer 88(10): 1592–7.PubMedCrossRefGoogle Scholar
  63. Rosen, L. S., R. Kurzrock, et al. (2007). “Safety, pharmacokinetics, and efficacy of AMG 706, an oral multikinase inhibitor, in patients with advanced solid tumors.” J Clin Oncol 25(17): 2369–76.PubMedGoogle Scholar
  64. Rosen, L. S., G. Wilding, et al. (2006). “Phase I dose escalation study to determine the safety, pharmacokinetics and pharmacodynamics of BMS-582664, a VEGFR/FGFR inhibitor in patients with advanced/metastatic solid tumors.” J Clin Oncol (Meeting Abstracts) 24(18 (suppl)): 3051.PubMedGoogle Scholar
  65. Rustin, G. J., S. M. Galbraith, et al. (2003). “Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results.” J Clin Oncol 21(15): 2815–22.PubMedCrossRefGoogle Scholar
  66. Schlemmer, H. P., J. Merkle, et al. (2004). “Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens?” Eur Radiol 14(2): 309–17.PubMedCrossRefGoogle Scholar
  67. Shaked, Y., A. Ciarrocchi, et al. (2006). “Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors.” Science 313(5794): 1785–87.PubMedCrossRefGoogle Scholar
  68. Stevenson, J. P., M. Rosen, et al. (2003). “Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow.” J Clin Oncol 21(23): 4428–38.PubMedCrossRefGoogle Scholar
  69. Taylor, N. J., N. Tunariu, et al. (2009). “Non-enhancing pixels: a specific additional DCE-MRI kinetic parameter for assessing antivascular effects of anti-angiogenic and vascular disruptive agents.” Proceedings of the joint meeting of International Society of Magnetic Resonance in Medicine, 16th Scientific Meeting and Exhibition, Honolulu: 2262.Google Scholar
  70. Thomas, A. L., B. Morgan, et al. (2005). “Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer.” J Clin Oncol 23(18): 4162–71.PubMedCrossRefGoogle Scholar
  71. Thukral, A., D. M. Thomasson, et al. (2007). “Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab – initial experience.” Radiology 244(3): 727–35.PubMedCrossRefGoogle Scholar
  72. Tofts, P., G. Brix, et al. (1999). “Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.” J Magn Reson Imaging 10(3): 223–32.PubMedCrossRefGoogle Scholar
  73. Tofts, P. S. (1997). “Modeling tracer kinetics in dynamic Gd-DTPA MR imaging.” J Magn Reson Imaging 7: 91–101.PubMedCrossRefGoogle Scholar
  74. Tozer, G. M., V. E. Prise, et al. (1999). “Combretastatin A-4 phosphate as a tumor ­vascular-targeting agent: early effects in tumors and normal tissues.” Cancer Res 59(7): 1626–34.PubMedGoogle Scholar
  75. Walker-Samuel, S., C. C. Parker, et al. (2007). “Reproducibility of reference tissue quantification of dynamic contrast-enhanced data: comparison with a fixed vascular input function.” Phys Med Biol 52(1): 75–89.PubMedCrossRefGoogle Scholar
  76. Wedam, S. B., J. A. Low, et al. (2006). “Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer.” J Clin Oncol 24(5): 769–77.PubMedCrossRefGoogle Scholar
  77. Weinmann, H. J., M. Laniado, et al. (1984). “Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers.” Physiol Chem Phys Med NMR 16(2): 167–72.PubMedGoogle Scholar
  78. Wilkinson, I. D., D. A. Jellineck, et al. (2006). “Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood-tumor barrier kinetics shown by magnetic resonance imaging.” Neurosurgery 58(4): 640–6; discussion 640–6.PubMedCrossRefGoogle Scholar
  79. Xiong, H. Q., R. Herbst, et al. (2004). “A phase I surrogate endpoint study of SU6668 in patients with solid tumors.” Invest New Drugs 22(4): 459–66.PubMedCrossRefGoogle Scholar
  80. Zhang, X., Z. Xiong, et al. (2006). “Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2.” J Nucl Med 47(1): 113–21.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of OncologyMount Vernon Cancer CentreNorthwoodUK

Personalised recommendations