Skip to main content

MRI to Assess Vascular Disruptive Agents

  • Chapter
  • First Online:
Vascular Disruptive Agents for the Treatment of Cancer

Abstract

A number of clinically applicable imaging techniques are able to assess the antivascular effects of antiangiogenic drugs and vascular disruptive agents (VDAs) via changes induced in functional kinetic parameters. These techniques include dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), dynamic susceptibility enhanced MRI, diffusion MRI, positron emission tomography (PET) with oxygen labelled water, perfusion/functional computed tomography (CT) and microbubble enhanced ultrasound. Each of these techniques yield quantitative or semi-quantitative kinetic parameters which can be related to blood flow, blood volume, extraction fraction, and vessel permeability. Changes in some of these imaging biomarkers can be used during the drug development process because they can serve as pharmacodynamic indicators of vascular activity in vivo. In this chapter, we discuss imaging techniques for the assessment of tumour vascularity that have been used to assess VDAs in clinical studies, with an emphasis on magnetic resonance imaging (MRI) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerley, W. L., M. Schabel, et al. (2007). A randomized phase 2 trial of combretatstatin A4 phosphate (CA4P) in combination with paclitaxel and carboplatin to evaluate safety and efficacy in subjects with advanced imageable malignancies.” J Clin Oncol, ASCO Annual Meeting Proceedings Part I 25(18S): 14060.

    Google Scholar 

  • Anderson, H. L., J. T. Yap, et al. (2003). “Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate.” J Clin Oncol 21(15): 2823–30.

    Article  PubMed  CAS  Google Scholar 

  • Baar, J., P. Silverman, et al. (2009). “A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer: impact on angiogenic biomarkers.” Clin Cancer Res 15(10): 3583–90.

    Article  PubMed  CAS  Google Scholar 

  • Batchelor, T. T., A. G. Sorensen, et al. (2007). “AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients.” Cancer Cell 11(1): 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Beauregard, D. A., S. A. Hill, et al. (2001). “The susceptibility of tumors to the antivascular drug combretastatin A4 phosphate correlates with vascular permeability.” Cancer Res 61(18): 6811–5.

    PubMed  CAS  Google Scholar 

  • Beauregard, D. A., R. B. Pedley, et al. (2002). “Differential sensitivity of two adenocarcinoma xenografts to the anti-vascular drugs combretastatin A4 phosphate and 5,6-dimethylxanthenone-4-acetic acid, assessed using MRI and MRS.” NMR Biomed 15(2): 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Beauregard, D. A., P. E. Thelwall, et al. (1998). “Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status.” Br J Cancer 77: 1761–7.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin, R. S., H. Choi, et al. (2007). “We should desist using RECIST, at least in GIST.” J Clin Oncol 25(13): 1760–4.

    Article  PubMed  Google Scholar 

  • Bilenker, J. H., K. T. Flaherty, et al. (2005). “Phase I trial of combretastatin a-4 phosphate with carboplatin.” Clin Cancer Res 11(4): 1527–33.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, D. L. (2002a). “Transcytolemmal water exchange and its affect on the determination of contrast agent concentration in vivo.” Magn Reson Med 47(2): 420–4.

    Article  PubMed  Google Scholar 

  • Buckley, D. L. (2002b). “Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI.” Magn Reson Med 47(3): 601–6.

    Article  PubMed  Google Scholar 

  • Chaplin, D. J., G. R. Pettit, et al. (1999). “Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate.” Anticancer Res 19(1A): 189–95.

    PubMed  CAS  Google Scholar 

  • Conrad, C., H. Friedman, et al. (2004). “A phase I/II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM).” J Clin Oncol (Meeting Abstracts) 22(14 (suppl)): 1512.

    Google Scholar 

  • Dowlati, A., K. Robertson, et al. (2002). “A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin A-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer.” Cancer Res 62(June 15): 3408–16.

    PubMed  CAS  Google Scholar 

  • Dowlati, A., K. Robertson, et al. (2005). “Novel Phase I dose de-escalation design trial to determine the biological modulatory dose of the antiangiogenic agent SU5416.” Clin Cancer Res 11(21): 7938–44.

    Article  PubMed  CAS  Google Scholar 

  • Drevs, J., M. Medinger, et al. (2005). “Phase I clinical evaluation of AZD2171, a highly potent VEGF receptor tyrosine kinase inhibitor, in patients with advanced tumors.” J Clin Oncol, 2005 ASCO Annual Meeting Proceedings 23(16S): 3002.

    Google Scholar 

  • Eby, P. R., S. C. Partridge, et al. (2008). “Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and (15)O-water positron emission tomography blood flow in breast cancer.” Acad Radiol 15(10): 1246–54.

    Article  PubMed  Google Scholar 

  • Evelhoch, J., P. LoRusso, et al. (2002). Dynamic contrast-enhanced MRI evaluation of the effects of ZD6126 on tumor vasculature in a phase I clinical trial. Proc. ISMRM, Honolulu, Hawaii.

    Google Scholar 

  • Evelhoch, J. L., P. M. LoRusso, et al. (2004). “Magnetic resonance imaging measurements of the response of murine and human tumors to the vascular-targeting agent ZD6126.” Clin Cancer Res 10(11): 3650–7.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, K. W., C. R. Merritt, et al. (2000). “Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents.” Acad Radiol 7(10): 824–39.

    Article  PubMed  CAS  Google Scholar 

  • Ferrier, M. C., H. Sarin, et al. (2007). “Validation of dynamic contrast-enhanced magnetic resonance imaging-derived vascular permeability measurements using quantitative autoradiography in the RG2 rat brain tumor model.” Neoplasia 9(7): 546–55.

    Article  PubMed  CAS  Google Scholar 

  • Galbraith, S. M., R. J. Maxwell, et al. (2003). “Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging.” J Clin Oncol 21(15): 2831–42.

    Article  PubMed  CAS  Google Scholar 

  • Galbraith, S. M., G. J. Rustin, et al. (2002). “Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging.” J Clin Oncol 20(18): 3826–40.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, O. M., C. Yang, et al. (2008). “Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma.” J Clin Oncol 26(28): 4572–8.

    Article  PubMed  CAS  Google Scholar 

  • Jain, R. K. (2001). “Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy.” Nat Med 7(9): 987–9.

    Article  PubMed  CAS  Google Scholar 

  • Jayson, G. C., J. Zweit, et al. (2002). “Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies.” J Natl Cancer Inst 94(19): 1484–93.

    Article  PubMed  CAS  Google Scholar 

  • Jonker, D. J., L. S. Rosen, et al. (2007). “A phase I study of BMS-582664 (brivanib alaninate), an oral dual inhibitor of VEGFR and FGFR tyrosine kinases, in patients (pts) with advanced/metastatic solid tumors: Safety, pharmacokinetic (PK), and pharmacodynamic (PD) findings.” Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I 25(18S (June 20 Supplement)): Abstract 3559.

    PubMed  CAS  Google Scholar 

  • Kamoun, W. S., C. D. Ley, et al. (2009). “Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice.” J Clin Oncol 27(15): 2542–52.

    Article  PubMed  CAS  Google Scholar 

  • Kanthou, C. and G. M. Tozer (2002). “The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells.” Blood 99(6): 2060–69.

    Article  PubMed  CAS  Google Scholar 

  • Kety, S. (1960a). “Blood-tissue exchange methods. Theory of blood-tissue exchange and its application to measurement of blood flow.” Meth Med Res 8: 223–27.

    Google Scholar 

  • Kety, S. (1960b). “Measurement of local blood flow by the exchange of an inert, diffusible substance.” Methods Med Res 8: 228–36.

    Google Scholar 

  • Landis, C. S., X. Li, et al. (2000). “Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange.” Magn Reson Med 44(4): 563–74.

    Article  PubMed  CAS  Google Scholar 

  • Lankester, K. J., R. J. Maxwell, et al. (2007a). “Combretastatin A-4-phosphate effectively increases tumor retention of the therapeutic antibody, 131I-A5B7, even at doses that are sub-optimal for vascular shut-down.” Int J Oncol 30(2): 453–60.

    PubMed  CAS  Google Scholar 

  • Lankester, K. J., J. N. Taylor, et al. (2007b). “Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors.” J Magn Reson Imaging 25(4): 796–805.

    Article  PubMed  Google Scholar 

  • Lankester, K. J., N. J. Taylor, et al. (2005). “Effects of platinum/taxane based chemotherapy on acute perfusion in human pelvic tumours measured by dynamic MRI.” Br J Cancer 93(9): 979–85.

    Article  PubMed  CAS  Google Scholar 

  • Leach MO, Brindle KM, et al. (2005). “The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations.” Br J Cancer 92: 1599–1610.

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Rugo HS, et al. (2005). “Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study.” J Clin Oncol 23(24): 5464–73.

    Google Scholar 

  • LoRusso, P. M., S. M. Gadgeel, et al. (2008). “Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors.” Invest New Drugs 26(2): 159–67.

    Article  PubMed  CAS  Google Scholar 

  • Mandeville, H. C., V. Goh, et al. (2008). “Volumetric perfusion CT assessment of concurrent combretastatin-A4-phosphate (CA4P) and radiotherapy (RT) in non-small cell lung cancer.” J Clin Oncol 26(May 20 suppl): abstr 14517.

    Google Scholar 

  • Maxwell, R. J., J. Wilson, et al. (2002). “Evaluation of the anti-vascular effects of combretastatin in rodent tumours by dynamic contrast enhanced MRI.” NMR Biomed 15(2): 89–98.

    Article  PubMed  CAS  Google Scholar 

  • McKeage, M. J., P. Fong, et al. (2006). “5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent.” Clin Cancer Res 12(6): 1776–84.

    Article  PubMed  CAS  Google Scholar 

  • McPhail, L. D., D. J. McIntyre, et al. (2006). “Rat tumor response to the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid as measured by dynamic contrast-enhanced magnetic resonance imaging, plasma 5-hydroxyindoleacetic acid levels, and tumor necrosis.” Neoplasia 8(3): 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Medved, M., G. Karczmar, et al. (2004). “Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: variability and changes in tumor tissue over time.” J Magn Reson Imaging 20(1): 122–8.

    Article  PubMed  Google Scholar 

  • Meyer, T., A. M. Gaya, et al. (2009). “A phase I trial of radioimmunotherapy with 131I-A5B7 anti-CEA antibody in combination with combretastatin-A4-phosphate in advanced gastrointestinal carcinomas.” Clin Cancer Res 15(13): 4484–92.

    Google Scholar 

  • Miles, K. A. and R. E. Williams (2008). “Warburg revisited: imaging tumour blood flow and metabolism.” Cancer Imaging 8: 81–6.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, B., A. L. Thomas, et al. (2003). “Dynamic contrast-enhanced magnetic resonance ­imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies.” J Clin Oncol 21(21): 3955–64.

    Article  PubMed  CAS  Google Scholar 

  • Mross, K., J. Drevs, et al. (2005a). “Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours.” Eur J Cancer 41(9): 1291–9.

    Article  PubMed  CAS  Google Scholar 

  • Mross, K. B., D. Gmehling, et al. (2005b). A clinical phase I, pharmacokinetic (PK), and pharmacodynamic study of twice daily BIBF 1120 in advanced cancer patients. J Clin Oncol (Meeting Abstracts).

    PubMed  CAS  Google Scholar 

  • Murata, R., J. Overgaard, et al. (2001). “Comparative effects of combretastatin A-4 disodium phosphate and 5,6- dimethylxanthenone-4-acetic acid on blood perfusion in a murine tumour and normal tissues.” Int J Radiat Biol 77(2): 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, P., I. Judson, et al. (2008). “A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors.” J Clin Oncol 26(May 20 suppl): 3550.

    Google Scholar 

  • Ng, Q. S., V. Goh, et al. (2007). “Tumor antivascular effects of radiotherapy combined with combretastatin a4 phosphate in human non-small-cell lung cancer.” Int J Radiat Oncol Biol Phys 67(5): 1375–80.

    Article  PubMed  CAS  Google Scholar 

  • Niermann, K. J., A. C. Fleischer, et al. (2007). “Measuring tumor perfusion in control and treated murine tumors: correlation of microbubble contrast-enhanced sonography to dynamic contrast-enhanced magnetic resonance imaging and fluorodeoxyglucose positron emission tomography.” J Ultrasound Med 26(6): 749–56.

    PubMed  Google Scholar 

  • O’Donnell, A., A. Padhani, et al. (2005). “A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points.” Br J Cancer 93(8): 876–83.

    Article  PubMed  Google Scholar 

  • O’Dwyer, P. J., M. Rosen, et al. (2005). “Pharmacodynamic study of BAY 43-9006 in patients with metastatic renal cell carcinoma.” J Clin Oncol (Meeting Abstracts) 23(16 (suppl)): 3005.

    Google Scholar 

  • Oostendorp, M., M. J. Post, et al. (2009). “Vessel growth and function: depiction with contrast-enhanced MR imaging.” Radiology 251(2): 317–35.

    Article  PubMed  Google Scholar 

  • Overmoyer, B., P. Silverman, et al. (2004). “Phase II trial of neoadjuvant docetaxel with or without bevacizumab in patients with locally advanced breast cancer.” J Clin Oncol, 2004 ASCO Annual Meeting Proceedings (Post-Meeting Edition) 22(14S (supplement)): Abstract 727.

    Google Scholar 

  • Padhani, A. R. and A. Dzik-Jurasz (2004). “Perfusion MR imaging of extracranial tumor angiogenesis.” Top Magn Reson Imaging 15(1): 41–57.

    Article  PubMed  Google Scholar 

  • Padhani, A. R., N. J. Taylor, et al. (2006). “Dynamic MRI evaluation of the triple receptor tyrosine kinase inhibitor BIBF 1120 in patients with advanced solid tumours.” Proc Intl Soc Magn Reson Med 14: 765.

    PubMed  CAS  Google Scholar 

  • Patterson, D. M., N. Charnley, et al. (2008). “Phase I evaluation of vascular disrupting agent OXi4503.” J Clin Oncol 26(May 20 suppl): abstract 3551.

    Google Scholar 

  • Patterson, D. M., P. Ross, et al. (2007). “Phase I evaluation of OXi4503, a vascular disrupting agent, in patients with advanced solid tumours.” J Clin Oncol (Meeting Abstracts) 25(18 suppl): 14146.

    Google Scholar 

  • Prise, V. E., D. J. Honess, et al. (2002). “The vascular response of tumor and normal tissues in the rat to the vascular targeting agent, combretastatin A-4-phosphate, at clinically relevant doses.” Int J Oncol 21(4): 717–26.

    PubMed  CAS  Google Scholar 

  • Robinson, S. P., D. J. McIntyre, et al. (2003). “Tumour dose response to the antivascular agent ZD6126 assessed by magnetic resonance imaging.” Br J Cancer 88(10): 1592–7.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, L. S., R. Kurzrock, et al. (2007). “Safety, pharmacokinetics, and efficacy of AMG 706, an oral multikinase inhibitor, in patients with advanced solid tumors.” J Clin Oncol 25(17): 2369–76.

    PubMed  CAS  Google Scholar 

  • Rosen, L. S., G. Wilding, et al. (2006). “Phase I dose escalation study to determine the safety, pharmacokinetics and pharmacodynamics of BMS-582664, a VEGFR/FGFR inhibitor in patients with advanced/metastatic solid tumors.” J Clin Oncol (Meeting Abstracts) 24(18 (suppl)): 3051.

    PubMed  CAS  Google Scholar 

  • Rustin, G. J., S. M. Galbraith, et al. (2003). “Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results.” J Clin Oncol 21(15): 2815–22.

    Article  PubMed  CAS  Google Scholar 

  • Schlemmer, H. P., J. Merkle, et al. (2004). “Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens?” Eur Radiol 14(2): 309–17.

    Article  PubMed  Google Scholar 

  • Shaked, Y., A. Ciarrocchi, et al. (2006). “Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors.” Science 313(5794): 1785–87.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, J. P., M. Rosen, et al. (2003). “Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow.” J Clin Oncol 21(23): 4428–38.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, N. J., N. Tunariu, et al. (2009). “Non-enhancing pixels: a specific additional DCE-MRI kinetic parameter for assessing antivascular effects of anti-angiogenic and vascular disruptive agents.” Proceedings of the joint meeting of International Society of Magnetic Resonance in Medicine, 16th Scientific Meeting and Exhibition, Honolulu: 2262.

    Google Scholar 

  • Thomas, A. L., B. Morgan, et al. (2005). “Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer.” J Clin Oncol 23(18): 4162–71.

    Article  PubMed  CAS  Google Scholar 

  • Thukral, A., D. M. Thomasson, et al. (2007). “Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab – initial experience.” Radiology 244(3): 727–35.

    Article  PubMed  Google Scholar 

  • Tofts, P., G. Brix, et al. (1999). “Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.” J Magn Reson Imaging 10(3): 223–32.

    Article  PubMed  CAS  Google Scholar 

  • Tofts, P. S. (1997). “Modeling tracer kinetics in dynamic Gd-DTPA MR imaging.” J Magn Reson Imaging 7: 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Tozer, G. M., V. E. Prise, et al. (1999). “Combretastatin A-4 phosphate as a tumor ­vascular-targeting agent: early effects in tumors and normal tissues.” Cancer Res 59(7): 1626–34.

    PubMed  CAS  Google Scholar 

  • Walker-Samuel, S., C. C. Parker, et al. (2007). “Reproducibility of reference tissue quantification of dynamic contrast-enhanced data: comparison with a fixed vascular input function.” Phys Med Biol 52(1): 75–89.

    Article  PubMed  CAS  Google Scholar 

  • Wedam, S. B., J. A. Low, et al. (2006). “Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer.” J Clin Oncol 24(5): 769–77.

    Article  PubMed  CAS  Google Scholar 

  • Weinmann, H. J., M. Laniado, et al. (1984). “Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers.” Physiol Chem Phys Med NMR 16(2): 167–72.

    PubMed  CAS  Google Scholar 

  • Wilkinson, I. D., D. A. Jellineck, et al. (2006). “Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood-tumor barrier kinetics shown by magnetic resonance imaging.” Neurosurgery 58(4): 640–6; discussion 640–6.

    Article  PubMed  Google Scholar 

  • Xiong, H. Q., R. Herbst, et al. (2004). “A phase I surrogate endpoint study of SU6668 in patients with solid tumors.” Invest New Drugs 22(4): 459–66.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Z. Xiong, et al. (2006). “Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2.” J Nucl Med 47(1): 113–21.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zweifel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zweifel, M., Padhani, A.R. (2010). MRI to Assess Vascular Disruptive Agents. In: Meyer, T. (eds) Vascular Disruptive Agents for the Treatment of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6609-4_7

Download citation

Publish with us

Policies and ethics