Skip to main content

Polymorphic Variation and Risk of Colorectal Cancer

  • Chapter
  • First Online:
Hereditary Colorectal Cancer

Part of the book series: M.D. Anderson Solid Tumor Oncology Series ((MDA,volume 5))

  • 995 Accesses

Abstract

Colorectal cancer (CRC) is the third commonest cancer worldwide after lung and breast cancer, and two-thirds of CRCs occur in developed countries [1, 2]. Despite recent advances in treatment the prognosis for CRC patients with advanced stage disease remains poor, and there is an urgent need for strategies to identify individuals with an increased CRC risk so that colonoscopic screening and chemoprevention can be directed to those who will obtain most benefit [1].

First-degree relatives of CRC patients have an approximately twofold increased risk of developing the disease themselves, and the risk increases with increasing number of affected family members and if CRC is diagnosed at a young age [3]. This familial aggregation may be due to shared environment, inherited factors, or a combination of both, but twin studies have provided convincing evidence that approximately a third of CRC can be ascribed to inherited factors [4]. Highly penetrant mutations have been characterised in the known CRC susceptibility genes APC, mismatch repair (MMR) genes, STK11/LKB1, SMAD4, and MUTYH, which respectively result in the syndromes of familial adenomatous polyposis (FAP), hereditary non-polyposis colorectal cancer (HNPCC) or Lynch syndrome, ­Peutz–Jeghers syndrome, juvenile polyposis syndrome, and MUTYH-associated polyposis (MAP). However, these syndromes together account for only about 5% of CRCs [5]. The nature of the remaining familial risk is unknown, but it is likely that a substantial proportion is conferred by a number of low-penetrance genetic variants with relatively high population frequency. Individually, these polymorphisms will be associated with only modest increases in risk, but when considered collectively they may confer substantial susceptibility [6]. Polymorphisms may influence CRC risk directly, may interact with each other or with relevant ­environmental exposures, and may influence the effectiveness of chemopreventive and chemotherapeutic agents. Identification of such low-penetrance colorectal ­susceptibility polymorphisms will not only permit more accurate determination of an individual’s CRC risk and thus allow more effective application of screening and preventive strategies, but may also provide further insights into the molecular pathways involved in colorectal carcinogenesis, and aid the discovery of novel drugs for CRC prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toms JR, editor. CancerStats monograph 2004. London: Cancer Research UK; 2004.

    Google Scholar 

  2. IARC. GLOBOCAN 2002. Cancer incidence, mortality, and prevalence worldwide (2002 estimates). Lyon: CANCERMondial; 2005.

    Google Scholar 

  3. Johns LE, Houlston RS. A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol. 2001;96:2992–3003.

    Article  PubMed  CAS  Google Scholar 

  4. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.

    Article  PubMed  CAS  Google Scholar 

  5. de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4:769–80.

    Article  PubMed  CAS  Google Scholar 

  6. Pharoah PD, Dunning AM, Ponder BA, Easton DF. Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004;4:850–60.

    Article  PubMed  CAS  Google Scholar 

  7. Risch NJ. Searching for genetic determinants in the new millennium. Nature. 2000;405:847–56.

    Article  PubMed  CAS  Google Scholar 

  8. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33 Suppl:228–37.

    Google Scholar 

  9. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999;22:231–8.

    Article  PubMed  CAS  Google Scholar 

  10. Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci U S A. 1999;96:15173–7.

    Article  PubMed  CAS  Google Scholar 

  11. Bonnen PE, Wang PJ, Kimmel M, Chakraborty R, Nelson DL. Haplotype and linkage disequilibrium architecture for human cancer-associated genes. Genome Res. 2002;12:1846–53.

    Article  PubMed  CAS  Google Scholar 

  12. Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–7.

    Article  PubMed  CAS  Google Scholar 

  13. Xiong M, Guo SW. Fine-scale genetic mapping based on linkage disequilibrium: theory and applications. Am J Hum Genet. 1997;60:1513–31.

    Article  PubMed  CAS  Google Scholar 

  14. Ott J. Predicting the range of linkage disequilibrium. Proc Natl Acad Sci U S A. 2000;97:2–3.

    Article  PubMed  CAS  Google Scholar 

  15. Chapman NH, Thompson EA. Linkage disequilibrium mapping: the role of population history, size, and structure. Adv Genet. 2001;42:413–37.

    Article  PubMed  CAS  Google Scholar 

  16. Stram DO, Leigh Pearce C, Bretsky P, Freedman M, Hirschhorn JD, Altshuler D, et al. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Hum Hered. 2003;55:179–90.

    Article  PubMed  Google Scholar 

  17. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.

    Article  PubMed  CAS  Google Scholar 

  18. Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs? Nat Genet. 2000;26:151–7.

    Article  PubMed  CAS  Google Scholar 

  19. Houlston RS, Peto J. The search for low-penetrance cancer susceptibility alleles. Oncogene. 2004;23:6471–6.

    Article  PubMed  CAS  Google Scholar 

  20. Houlston RS, Peto J. The future of association studies of common cancers. Hum Genet. 2003;112:434–5.

    PubMed  Google Scholar 

  21. Antoniou AC, Easton DF. Polygenic inheritance of breast cancer: implications for design of association studies. Genet Epidemiol. 2003;25:190–202.

    Article  PubMed  Google Scholar 

  22. Dunning AM, Healey CS, Pharoah PD, Teare MD, Ponder BA, Easton DF. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1999;8:843–54.

    PubMed  CAS  Google Scholar 

  23. Gambaro G, Anglani F, D’Angelo A. Association studies of genetic polymorphisms and complex disease. Lancet. 2000;355:308–11.

    Article  PubMed  CAS  Google Scholar 

  24. Houlston RS, Tomlinson IP. Polymorphisms and colorectal tumor risk. Gastroenterology. 2001;121:282–301.

    Article  PubMed  CAS  Google Scholar 

  25. Cardon LR, Palmer LJ. Population stratification and spurious allelic association. Lancet. 2003;361:598–604.

    Article  PubMed  Google Scholar 

  26. Risch N, Teng J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res. 1998;8:1273–88.

    PubMed  CAS  Google Scholar 

  27. Fearnhead NS, Wilding JL, Bodmer WF. Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull. 2002;64:27–43.

    Article  PubMed  CAS  Google Scholar 

  28. Sugimura T, Nagao M, Wakabayashi K. Heterocyclic amines in cooked foods: candidates for causation of common cancers. J Natl Cancer Inst. 1994;86:2–4.

    Article  PubMed  CAS  Google Scholar 

  29. Kaderlik KR, Minchin RF, Mulder GJ, Ileh KF, Daugaard-Jenson M, Teitel CH, et al. Metabolic activation pathway for the formation of DNA adducts of the carcinogen 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) in rat extrahepatic tissues. Carcinogenesis. 1994;15:1703–9.

    Article  PubMed  CAS  Google Scholar 

  30. Shimada T, Yun CH, Yamazaki H, Gautier JC, Beaune PH, Guengerich FP. Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens. Mol Pharmacol. 1992;41:856–64.

    PubMed  CAS  Google Scholar 

  31. Tsuchida S, Sato K. Glutathione transferases and cancer. Crit Rev Biochem Mol Biol. 1992;27:337–84.

    Article  PubMed  CAS  Google Scholar 

  32. Smith G, Stanley LA, Sim E, Strange RC, Wolf CR. Metabolic polymorphisms and cancer susceptibility. Cancer Surv. 1995;25:27–65.

    PubMed  CAS  Google Scholar 

  33. de Jong MM, Nolte IM, te Meerman GJ, Van Der Graf WT, de Vries EG, Sijmons RH, et al. Low-penetrance genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 2002;11:1332–52.

    PubMed  Google Scholar 

  34. Choi SW, Mason JB. Folate status: effects on pathways of colorectal carcinogenesis. J Nutr. 2002;132:2413S–8.

    PubMed  CAS  Google Scholar 

  35. Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ. Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005;113:825–8.

    Article  PubMed  CAS  Google Scholar 

  36. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.

    Article  PubMed  CAS  Google Scholar 

  37. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64:169–72.

    Article  PubMed  CAS  Google Scholar 

  38. Hubner RA, Houlston RS. MTHFR C677T and colorectal cancer risk: a meta-analysis of 25 populations. Int J Cancer. 2007;120:1027–35.

    Article  PubMed  CAS  Google Scholar 

  39. Huang Y, Han S, Li Y, Mao Y, Xie Y. Different roles of MTHFR C677T and A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J Hum Genet. 2007;52:73–85.

    Article  PubMed  CAS  Google Scholar 

  40. Shannon B, Gnanasampanthan S, Beilby J, Iacopetta B. A polymorphism in the methylenetetrahydrofolate reductase gene predisposes to colorectal cancers with microsatellite instability. Gut. 2002;50:520–4.

    Article  PubMed  CAS  Google Scholar 

  41. Le Marchand L, Donlon T, Hankin JH, Kolonel LN, Wilkens LR, Seifried A. B-vitamin intake, metabolic genes, and colorectal cancer risk (United States). Cancer Causes Control. 2002;13:239–48.

    Article  PubMed  Google Scholar 

  42. Pufulete M, Al-Ghnaniem R, Leather AJ, Appleby P, Gout S, Terry L, et al. Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study. Gastroenterology. 2003;124:1240–8.

    Article  PubMed  CAS  Google Scholar 

  43. Ma J, Stampfer MJ, Christensen B, Giovannucci E, Hunter DJ, Chen J, et al. A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 1999;8:825–9.

    PubMed  CAS  Google Scholar 

  44. Matsuo K, Ito H, Wakai K, Hirose K, Saito T, Suzuki T, et al. One-carbon metabolism related gene polymorphisms interact with alcohol drinking to influence the risk of colorectal cancer in Japan. Carcinogenesis. 2005;26:2164–71.

    Article  PubMed  CAS  Google Scholar 

  45. Ulvik A, Vollset SE, Hansen S, Gislefoss R, Jellum E, Ueland PM. Colorectal cancer and the methylenetetrahydrofolate reductase 677C→T and methionine synthase 2756A→G polymorphisms: a study of 2, 168 case-control pairs from the JANUS cohort. Cancer Epidemiol Biomarkers Prev. 2004;13:2175–80.

    PubMed  CAS  Google Scholar 

  46. Matsuo K, Hamajima N, Hirai T, Kato T, Inoue M, Takezaki T, et al. Methionine synthase reductase gene A66G polymorphism is associated with risk of colorectal cancer. Asian Pac J Cancer Prev. 2002;3:353–9.

    PubMed  Google Scholar 

  47. Reddy BS, Wynder EL. Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer. 1977;39:2533–9.

    Article  PubMed  CAS  Google Scholar 

  48. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240:622–30.

    Article  PubMed  CAS  Google Scholar 

  49. Davidson NO. Apolipoprotein E polymorphism: another player in the genetics of colon cancer susceptibility? Gastroenterology. 1996;110:2006–9.

    Article  PubMed  CAS  Google Scholar 

  50. Cormier RT, Hong KH, Halberg RB, Hawkins TL, Richardson P, Mulherkar R, et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet. 1997;17:88–91.

    Article  PubMed  CAS  Google Scholar 

  51. Tomlinson IP, Beck NE, Neale K, Bodmer WF. Variants at the secretory phospholipase A2 (PLA2G2A) locus: analysis of associations with familial adenomatous polyposis and sporadic colorectal tumours. Ann Hum Genet. 1996;60:369–76.

    Article  PubMed  CAS  Google Scholar 

  52. Krontiris TG, Devlin B, Karp DD, Robert NJ, Risch N. An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N Engl J Med. 1993;329:517–23.

    Article  PubMed  CAS  Google Scholar 

  53. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991;352:345–7.

    Article  PubMed  CAS  Google Scholar 

  54. Ilyas M, Tomlinson IP. Genetic pathways in colorectal cancer. Histopathology. 1996;28:389–99.

    Article  PubMed  CAS  Google Scholar 

  55. Clevers H. At the crossroads of inflammation and cancer. Cell. 2004;118:671–4.

    Article  PubMed  CAS  Google Scholar 

  56. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56.

    Article  PubMed  CAS  Google Scholar 

  57. Sun T, Gao Y, Tan W, Ma S, Shi Y, Yao J, et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet. 2007;39:605–13.

    Article  PubMed  CAS  Google Scholar 

  58. Lipkin SM, Rozek LS, Rennert G, Yang W, Chen PC, Hacia J, et al. The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nat Genet. 2004;36:694–9.

    Article  PubMed  CAS  Google Scholar 

  59. Raptis S, Mrkonjic M, Green RC, Pethe W, Monga N, Cham YM, et al. MLH1 −93G > A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. J Natl Cancer Inst. 2007;99:463–74.

    Article  PubMed  CAS  Google Scholar 

  60. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  61. Thompson SG. Why and how sources of heterogeneity should be investigated. In: Egger M, Smith GD, Altman DG, editors. Systematic reviews in health care: meta-analysis in context. London: BMJ Publishing Group; 2001. p. 157–75.

    Chapter  Google Scholar 

  62. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed  CAS  Google Scholar 

  63. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004;74:106–20.

    Article  PubMed  CAS  Google Scholar 

  64. Halldorsson BV, Bafna V, Lippert R, Schwartz R, De La Vega FM, Clark AG, et al. Optimal haplotype block-free selection of tagging SNPs for genome-wide association studies. Genome Res. 2004;14:1633–40.

    Article  PubMed  CAS  Google Scholar 

  65. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007;39:984–8.

    Article  PubMed  CAS  Google Scholar 

  66. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet. 2007;39:989–94.

    Article  PubMed  CAS  Google Scholar 

  67. Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet. 2008;40:623–30.

    Article  PubMed  CAS  Google Scholar 

  68. Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, Haq N, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 2008;40:631–7.

    Article  PubMed  CAS  Google Scholar 

  69. Jaeger E, Webb E, Howarth K, Carvajal-Carmona L, Rowan A, Broderick P, et al. Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat Genet. 2008;40:26–8.

    Article  PubMed  CAS  Google Scholar 

  70. Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet. 2007;39:1315–7.

    Article  PubMed  CAS  Google Scholar 

  71. Houlston RS, Webb E, Broderick P, Pittman AM, DiBernardo MC, Lubbe S, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008;40:1426–35.

    Article  PubMed  CAS  Google Scholar 

  72. Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE, et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst. 2008;100:962–6.

    Article  PubMed  CAS  Google Scholar 

  73. Haiman CA, Le Marchand L, Yamamato J, Stram DO, Sheng X, Kolonel LN, et al. A common genetic risk factor for colorectal and prostate cancer. Nat Genet. 2007;39:954–6.

    Article  PubMed  CAS  Google Scholar 

  74. Hunter DJ. Gene–environment interactions in human diseases. Nat Rev Genet. 2005;6:287–98.

    Article  PubMed  CAS  Google Scholar 

  75. Chen J, Giovannucci E, Kelsey K, Rimm EB, Stampfer MJ, Colditz GA, et al. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res. 1996;56:4862–4.

    PubMed  CAS  Google Scholar 

  76. Chan AT, Tranah GJ, Giovannucci EL, Artigas C, Hunter DJ, Fuchs C, et al. Genetic variants in the UGT1A6 enzyme, aspirin use, and the risk of colorectal adenoma. J Natl Cancer Inst. 2005;97:457–60.

    Article  PubMed  CAS  Google Scholar 

  77. Ma J, Stampfer MJ, Giovannucci E, et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 1997;57:1098–102.

    PubMed  CAS  Google Scholar 

  78. Brown JR, DuBois RN. COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol. 2005;23:2840–55.

    Article  PubMed  CAS  Google Scholar 

  79. Chan TA. Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. Lancet Oncol. 2002;3:166–74.

    Article  PubMed  CAS  Google Scholar 

  80. Ulrich CM, Bigler J, Sparks R, Whitton J, Sibert JG, Goode EL, et al. Polymorphisms in PTGS1 (=COX-1) and risk of ­colorectal polyps. Cancer Epidemiol Biomarkers Prev. 2004;13:889–93.

    PubMed  CAS  Google Scholar 

  81. Ulrich CM, Whitton J, Yu JH, Sibert J, Sparks R, Potter JD, et al. PTGS2 (COX-2) −765G > C promoter variant reduces risk of colorectal adenoma among nonusers of nonsteroidal anti-inflammatory drugs. Cancer Epidemiol Biomarkers Prev. 2005;14:616–9.

    Article  PubMed  CAS  Google Scholar 

  82. Ulrich CM, Bigler J, Bostick R, Fosdick L, Potter JD. Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res. 2002;62:3361–4.

    PubMed  CAS  Google Scholar 

  83. Koushik A, Kraft P, Fuchs CS, Hankinson SE, Willette WC, Giovannucci EL, et al. Nonsynonymous polymorphisms in genes in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:2408–17.

    Article  PubMed  CAS  Google Scholar 

  84. Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL, et al. Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Res. 2007;67:1395–404.

    Article  PubMed  CAS  Google Scholar 

  85. Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med. 2003;348:883–90.

    Article  PubMed  CAS  Google Scholar 

  86. Baron JA, Cole BF, Sandler RS, Haile RW, Annen D, Bresalier R, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003;348:891–9.

    Article  PubMed  CAS  Google Scholar 

  87. Martinez ME, O’Brien TG, Fultz KE, Babbar N, Yerushalmi H, Qu N, et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc Natl Acad Sci USA. 2003;100:7859–64.

    Article  PubMed  CAS  Google Scholar 

  88. Barry EL, Baron JA, Bhat S, Grau MV, Burke CA, Sandler RS, et al. Ornithine decarboxylase polymorphism modification of response to aspirin treatment for colorectal adenoma prevention. J Natl Cancer Inst. 2006;98:1494–500.

    Article  PubMed  CAS  Google Scholar 

  89. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest. 1998;101:847–54.

    Article  PubMed  CAS  Google Scholar 

  90. Ando Y, Ueoka H, Sugiyama T, Ichiki M, Shimokata K, Hasegawa Y. Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther Drug Monit. 2002;24:111–6.

    Article  PubMed  CAS  Google Scholar 

  91. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, DeBoer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333:1171–5.

    Article  PubMed  CAS  Google Scholar 

  92. Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ, Sawa T, Muro K, Ueoka H, et al. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 1994;54:3723–5.

    PubMed  CAS  Google Scholar 

  93. Ando Y, Saka H, Ando M, et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 2000;60:6921–6.

    PubMed  CAS  Google Scholar 

  94. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2002;2:43–7.

    Article  PubMed  CAS  Google Scholar 

  95. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22:1382–8.

    Article  PubMed  CAS  Google Scholar 

  96. Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D’Andrea M, et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol. 2006;24:3061–8.

    Article  PubMed  CAS  Google Scholar 

  97. Jakobsen A, Nielsen JN, Gyldenkerne N, Lindeberg J. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphism in normal tissue as predictors of fluorouracil sensitivity. J Clin Oncol. 2005;23:1365–9.

    Article  PubMed  CAS  Google Scholar 

  98. Dotor E, Cuatrecases M, Martinez-Iniesta M, Navarro M, Vilardell F, Guino E, et al. Tumor thymidylate synthase 1494del6 genotype as a prognostic factor in colorectal cancer patients receiving fluorouracil-based adjuvant treatment. J Clin Oncol. 2006;24:1603–11.

    Article  PubMed  CAS  Google Scholar 

  99. Etienne MC, Formento JL, Chazal M, Franoual M, Magne N, Formento P, et al. Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics. 2004;14:785–92.

    Article  PubMed  CAS  Google Scholar 

  100. Viguier J, Boige V, Miquel C, Pocard M, Giraudeau B, Sabourin JC, et al. ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin Cancer Res. 2005;11:6212–7.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang W, Gordon M, Press OA, Rhodes K, Vall bohmer D, Yang DY, et al. Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with Cetuximab. Pharmacogenet Genomics. 2006;16:475–83.

    Article  PubMed  CAS  Google Scholar 

  102. Chao C, Zhang ZF, Berthiller J, Boffetta P, Hashibe M. NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancers: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15:979–87.

    Article  PubMed  CAS  Google Scholar 

  103. Castellvi-Bel S, Castells A, de Cid R, Munoz J, Balaguer F, Gonzalo V, et al. Association of the Arlts1 Cys148arg variant with sporadic and familial colorectal cancer. Carcinogenesis. 2007;28:1687–91.

    Article  PubMed  CAS  Google Scholar 

  104. Shin Y, Kim IJ, Kang HC, Park JH, Park HW, Jang SG, et al. A functional polymorphism (-347G→GA) in the E-cadherin gene is associated with colorectal cancer. Carcinogenesis. 2004;25:2173–6.

    Article  PubMed  CAS  Google Scholar 

  105. Kilpivaara O, Alhopuro P, Vahteristo P, Aaltonen LA, Nevanlinna H. CHEK2 I157T associates with familial and sporadic colorectal cancer. J Med Genet. 2006;43:e34.

    Article  PubMed  CAS  Google Scholar 

  106. Gemignani F, Landi S, Moreno V, Gemignani F, Landi S, Moreno V, et al. Polymorphisms of the dopamine receptor gene DRD2 and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2005;14:1633–8.

    Article  PubMed  CAS  Google Scholar 

  107. Slattery ML, Sweeney C, Murtaugh M, Mak N, Wolff RK, Potter JD, et al. Associations between ERalpha, ERbeta, and AR genotypes and colon and rectal cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:2936–42.

    Article  PubMed  CAS  Google Scholar 

  108. Yamamoto H, Hanafusa H, Ouchida M, Yano M, Suzuki H, Murakami M, et al. Single nucleotide polymorphisms in the EXO1 gene and risk of colorectal cancer in a Japanese population. Carcinogenesis. 2005;26:411–6.

    Article  PubMed  CAS  Google Scholar 

  109. Jang SG, Kim IJ, Kang HC, Park HW, Ahn SA, Yoon HJ, et al. GSTT2 promoter polymorphisms and colorectal cancer risk. BMC Cancer. 2007;7:16.

    Article  PubMed  CAS  Google Scholar 

  110. Berndt SI, Platz EA, Fallin MD, Thuita LW, Hoffman SC, Helzlsouer KJ. Mismatch repair polymorphisms and the risk of colorectal cancer. Int J Cancer. 2007;120:1548–54.

    Article  PubMed  CAS  Google Scholar 

  111. Hinoda Y, Okayama N, Takano N, Fujimura K, Suehiro Y, Hamanaka Y, et al. Association of functional polymorphisms of matrix metalloproteinase (MMP)-1 and MMP-3 genes with colorectal cancer. Int J Cancer. 2002;102:526–9.

    Article  PubMed  CAS  Google Scholar 

  112. Elander N, Soderkvist P, Fransen K. Matrix metalloproteinase (MMP)-1, -2, -3 and -9 promoter polymorphisms in colorectal cancer. Anticancer Res. 2006;26:791–5.

    PubMed  CAS  Google Scholar 

  113. Le Marchand L, Kolonel LN, Henderson BE, Wilkens LR. Association of an exon 1 polymorphism in the IGFBP3 gene with circulating IGFBP-3 levels and colorectal cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2005;14:1319–21.

    Article  PubMed  Google Scholar 

  114. Morimoto LM, Newcomb PA, White E, Bigler J, Potter JD. Insulin-like growth factor polymorphisms and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2005;14:1204–11.

    Article  PubMed  CAS  Google Scholar 

  115. Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, DeOca J, et al. Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Res. 2003;63:3560–6.

    PubMed  CAS  Google Scholar 

  116. Slattery ML, Samowitz W, Curtin K, Mak N, Hoffman M, Caan B, et al. Associations among IRS1, IRS2, IGF1, and IGFBP3 genetic polymorphisms and colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:1206–14.

    PubMed  CAS  Google Scholar 

  117. Tranah GJ, Bugni J, Giovannucci E, Ma J, Fuchs L, Hines L, et al. O6-methylguanine-DNA methyltransferase Leu84Phe and Ile143Val polymorphisms and risk of colorectal cancer in the Nurses’ Health Study and Physicians’ Health Study (United States). Cancer Causes Control. 2006;17:721–31.

    Article  PubMed  Google Scholar 

  118. Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I, et al. Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res. 2006;12:2101–8.

    Article  PubMed  CAS  Google Scholar 

  119. Koh WP, Yuan JM, Van Den Berg D, Ingles SA, Yu MC. Peroxisome proliferator-activated receptor (PPAR) gamma gene polymorphisms and colorectal cancer risk among Chinese in Singapore. Carcinogenesis. 2006;27:1797–802.

    Article  PubMed  CAS  Google Scholar 

  120. Tsuge M, Hamamoto R, Silva FP, Ohnishi Y, Chayama K, Kamatani N, et al. A variable number of tandem repeats polymorphism in an E2F-1 binding element in the 5′ flanking region of SMYD3 is a risk factor for human cancers. Nat Genet. 2005;37:1104–7.

    Article  PubMed  CAS  Google Scholar 

  121. Chung SJ, Kim JS, Jung HC, Song IS. Transforming growth factor-[beta]1 −509T reduces risk of colorectal cancer, but not adenoma in Koreans. Cancer Sci. 2007;98:401–4.

    Article  PubMed  CAS  Google Scholar 

  122. Chen J, Hunter DJ, Stampfer MJ, Kyte C, Chan W, Wetmur JG, et al. Polymorphism in the thymidylate synthase promoter enhancer region modifies the risk and survival of colorectal cancer. Cancer Epidemiol BiomarkersPrev. 2003;12:958–62.

    CAS  Google Scholar 

  123. Stoehlmacher J, Mandola MV, Yun J, et al. Alterations of the thymidylate synthase (TS) pathway and colorectal cancer risk – the impact of three TS polymorphisms. Proc Am Assoc Cancer Res. 2003;44:A2614.

    Google Scholar 

  124. Sweeney C, Curtin K, Murtaugh MA, Caan BJ, Potter JD, Slattery ML. Haplotype analysis of common vitamin D receptor variants and colon and rectal cancers. Cancer Epidemiol Biomarkers Prev. 2006;15:744–9.

    Article  PubMed  CAS  Google Scholar 

  125. Wong HL, Seow A, Arakawa K, Lee HP, Yu MC, Ingles SA. Vitamin D receptor start codon polymorphism and colorectal cancer risk: effect modification by dietary calcium and fat in Singapore Chinese. Carcinogenesis. 2003;24:1091–5.

    Article  PubMed  CAS  Google Scholar 

  126. Jin MJ, Chen K, Song L, Fan CH, Chen Q, Zhu YM, et al. The association of the DNA repair gene XRCC3 Thr241Met polymorphism with susceptibility to colorectal cancer in a Chinese population. Cancer Genet Cytogenet. 2005;163:38–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

RAH is in receipt of a clinical research training fellowship from Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Hubner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hubner, R.A., Houlston, R.S. (2010). Polymorphic Variation and Risk of Colorectal Cancer. In: Rodriguez-Bigas, M., Cutait, R., Lynch, P., Tomlinson, I., Vasen, H. (eds) Hereditary Colorectal Cancer. M.D. Anderson Solid Tumor Oncology Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6603-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6603-2_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6602-5

  • Online ISBN: 978-1-4419-6603-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics