Polymorphic Variation and Risk of Colorectal Cancer

  • Richard A. HubnerEmail author
  • Richard S. Houlston
Part of the M.D. Anderson Solid Tumor Oncology Series book series (MDA, volume 5)


Colorectal cancer (CRC) is the third commonest cancer worldwide after lung and breast cancer, and two-thirds of CRCs occur in developed countries [1, 2]. Despite recent advances in treatment the prognosis for CRC patients with advanced stage disease remains poor, and there is an urgent need for strategies to identify individuals with an increased CRC risk so that colonoscopic screening and chemoprevention can be directed to those who will obtain most benefit [1].

First-degree relatives of CRC patients have an approximately twofold increased risk of developing the disease themselves, and the risk increases with increasing number of affected family members and if CRC is diagnosed at a young age [3]. This familial aggregation may be due to shared environment, inherited factors, or a combination of both, but twin studies have provided convincing evidence that approximately a third of CRC can be ascribed to inherited factors [4]. Highly penetrant mutations have been characterised in the known CRC susceptibility genes APC, mismatch repair (MMR) genes, STK11/LKB1, SMAD4, and MUTYH, which respectively result in the syndromes of familial adenomatous polyposis (FAP), hereditary non-polyposis colorectal cancer (HNPCC) or Lynch syndrome, ­Peutz–Jeghers syndrome, juvenile polyposis syndrome, and MUTYH-associated polyposis (MAP). However, these syndromes together account for only about 5% of CRCs [5]. The nature of the remaining familial risk is unknown, but it is likely that a substantial proportion is conferred by a number of low-penetrance genetic variants with relatively high population frequency. Individually, these polymorphisms will be associated with only modest increases in risk, but when considered collectively they may confer substantial susceptibility [6]. Polymorphisms may influence CRC risk directly, may interact with each other or with relevant ­environmental exposures, and may influence the effectiveness of chemopreventive and chemotherapeutic agents. Identification of such low-penetrance colorectal ­susceptibility polymorphisms will not only permit more accurate determination of an individual’s CRC risk and thus allow more effective application of screening and preventive strategies, but may also provide further insights into the molecular pathways involved in colorectal carcinogenesis, and aid the discovery of novel drugs for CRC prevention and treatment.


Polymorphic Variation Risk Colorectal cancer 



RAH is in receipt of a clinical research training fellowship from Cancer Research UK.


  1. 1.
    Toms JR, editor. CancerStats monograph 2004. London: Cancer Research UK; 2004.Google Scholar
  2. 2.
    IARC. GLOBOCAN 2002. Cancer incidence, mortality, and prevalence worldwide (2002 estimates). Lyon: CANCERMondial; 2005.Google Scholar
  3. 3.
    Johns LE, Houlston RS. A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol. 2001;96:2992–3003.PubMedCrossRefGoogle Scholar
  4. 4.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.PubMedCrossRefGoogle Scholar
  5. 5.
    de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4:769–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Pharoah PD, Dunning AM, Ponder BA, Easton DF. Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004;4:850–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Risch NJ. Searching for genetic determinants in the new millennium. Nature. 2000;405:847–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33 Suppl:228–37.Google Scholar
  9. 9.
    Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999;22:231–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci U S A. 1999;96:15173–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Bonnen PE, Wang PJ, Kimmel M, Chakraborty R, Nelson DL. Haplotype and linkage disequilibrium architecture for human cancer-associated genes. Genome Res. 2002;12:1846–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Xiong M, Guo SW. Fine-scale genetic mapping based on linkage disequilibrium: theory and applications. Am J Hum Genet. 1997;60:1513–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Ott J. Predicting the range of linkage disequilibrium. Proc Natl Acad Sci U S A. 2000;97:2–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Chapman NH, Thompson EA. Linkage disequilibrium mapping: the role of population history, size, and structure. Adv Genet. 2001;42:413–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Stram DO, Leigh Pearce C, Bretsky P, Freedman M, Hirschhorn JD, Altshuler D, et al. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Hum Hered. 2003;55:179–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs? Nat Genet. 2000;26:151–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Houlston RS, Peto J. The search for low-penetrance cancer susceptibility alleles. Oncogene. 2004;23:6471–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Houlston RS, Peto J. The future of association studies of common cancers. Hum Genet. 2003;112:434–5.PubMedGoogle Scholar
  21. 21.
    Antoniou AC, Easton DF. Polygenic inheritance of breast cancer: implications for design of association studies. Genet Epidemiol. 2003;25:190–202.PubMedCrossRefGoogle Scholar
  22. 22.
    Dunning AM, Healey CS, Pharoah PD, Teare MD, Ponder BA, Easton DF. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1999;8:843–54.PubMedGoogle Scholar
  23. 23.
    Gambaro G, Anglani F, D’Angelo A. Association studies of genetic polymorphisms and complex disease. Lancet. 2000;355:308–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Houlston RS, Tomlinson IP. Polymorphisms and colorectal tumor risk. Gastroenterology. 2001;121:282–301.PubMedCrossRefGoogle Scholar
  25. 25.
    Cardon LR, Palmer LJ. Population stratification and spurious allelic association. Lancet. 2003;361:598–604.PubMedCrossRefGoogle Scholar
  26. 26.
    Risch N, Teng J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res. 1998;8:1273–88.PubMedGoogle Scholar
  27. 27.
    Fearnhead NS, Wilding JL, Bodmer WF. Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull. 2002;64:27–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Sugimura T, Nagao M, Wakabayashi K. Heterocyclic amines in cooked foods: candidates for causation of common cancers. J Natl Cancer Inst. 1994;86:2–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Kaderlik KR, Minchin RF, Mulder GJ, Ileh KF, Daugaard-Jenson M, Teitel CH, et al. Metabolic activation pathway for the formation of DNA adducts of the carcinogen 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) in rat extrahepatic tissues. Carcinogenesis. 1994;15:1703–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Shimada T, Yun CH, Yamazaki H, Gautier JC, Beaune PH, Guengerich FP. Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens. Mol Pharmacol. 1992;41:856–64.PubMedGoogle Scholar
  31. 31.
    Tsuchida S, Sato K. Glutathione transferases and cancer. Crit Rev Biochem Mol Biol. 1992;27:337–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Smith G, Stanley LA, Sim E, Strange RC, Wolf CR. Metabolic polymorphisms and cancer susceptibility. Cancer Surv. 1995;25:27–65.PubMedGoogle Scholar
  33. 33.
    de Jong MM, Nolte IM, te Meerman GJ, Van Der Graf WT, de Vries EG, Sijmons RH, et al. Low-penetrance genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 2002;11:1332–52.PubMedGoogle Scholar
  34. 34.
    Choi SW, Mason JB. Folate status: effects on pathways of colorectal carcinogenesis. J Nutr. 2002;132:2413S–8.PubMedGoogle Scholar
  35. 35.
    Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ. Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005;113:825–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64:169–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Hubner RA, Houlston RS. MTHFR C677T and colorectal cancer risk: a meta-analysis of 25 populations. Int J Cancer. 2007;120:1027–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Huang Y, Han S, Li Y, Mao Y, Xie Y. Different roles of MTHFR C677T and A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J Hum Genet. 2007;52:73–85.PubMedCrossRefGoogle Scholar
  40. 40.
    Shannon B, Gnanasampanthan S, Beilby J, Iacopetta B. A polymorphism in the methylenetetrahydrofolate reductase gene predisposes to colorectal cancers with microsatellite instability. Gut. 2002;50:520–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Le Marchand L, Donlon T, Hankin JH, Kolonel LN, Wilkens LR, Seifried A. B-vitamin intake, metabolic genes, and colorectal cancer risk (United States). Cancer Causes Control. 2002;13:239–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Pufulete M, Al-Ghnaniem R, Leather AJ, Appleby P, Gout S, Terry L, et al. Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study. Gastroenterology. 2003;124:1240–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Ma J, Stampfer MJ, Christensen B, Giovannucci E, Hunter DJ, Chen J, et al. A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 1999;8:825–9.PubMedGoogle Scholar
  44. 44.
    Matsuo K, Ito H, Wakai K, Hirose K, Saito T, Suzuki T, et al. One-carbon metabolism related gene polymorphisms interact with alcohol drinking to influence the risk of colorectal cancer in Japan. Carcinogenesis. 2005;26:2164–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Ulvik A, Vollset SE, Hansen S, Gislefoss R, Jellum E, Ueland PM. Colorectal cancer and the methylenetetrahydrofolate reductase 677C→T and methionine synthase 2756A→G polymorphisms: a study of 2, 168 case-control pairs from the JANUS cohort. Cancer Epidemiol Biomarkers Prev. 2004;13:2175–80.PubMedGoogle Scholar
  46. 46.
    Matsuo K, Hamajima N, Hirai T, Kato T, Inoue M, Takezaki T, et al. Methionine synthase reductase gene A66G polymorphism is associated with risk of colorectal cancer. Asian Pac J Cancer Prev. 2002;3:353–9.PubMedGoogle Scholar
  47. 47.
    Reddy BS, Wynder EL. Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer. 1977;39:2533–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240:622–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Davidson NO. Apolipoprotein E polymorphism: another player in the genetics of colon cancer susceptibility? Gastroenterology. 1996;110:2006–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Cormier RT, Hong KH, Halberg RB, Hawkins TL, Richardson P, Mulherkar R, et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet. 1997;17:88–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Tomlinson IP, Beck NE, Neale K, Bodmer WF. Variants at the secretory phospholipase A2 (PLA2G2A) locus: analysis of associations with familial adenomatous polyposis and sporadic colorectal tumours. Ann Hum Genet. 1996;60:369–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Krontiris TG, Devlin B, Karp DD, Robert NJ, Risch N. An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N Engl J Med. 1993;329:517–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991;352:345–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Ilyas M, Tomlinson IP. Genetic pathways in colorectal cancer. Histopathology. 1996;28:389–99.PubMedCrossRefGoogle Scholar
  55. 55.
    Clevers H. At the crossroads of inflammation and cancer. Cell. 2004;118:671–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56.PubMedCrossRefGoogle Scholar
  57. 57.
    Sun T, Gao Y, Tan W, Ma S, Shi Y, Yao J, et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet. 2007;39:605–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Lipkin SM, Rozek LS, Rennert G, Yang W, Chen PC, Hacia J, et al. The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nat Genet. 2004;36:694–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Raptis S, Mrkonjic M, Green RC, Pethe W, Monga N, Cham YM, et al. MLH1 −93G > A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. J Natl Cancer Inst. 2007;99:463–74.PubMedCrossRefGoogle Scholar
  60. 60.
    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.PubMedCrossRefGoogle Scholar
  61. 61.
    Thompson SG. Why and how sources of heterogeneity should be investigated. In: Egger M, Smith GD, Altman DG, editors. Systematic reviews in health care: meta-analysis in context. London: BMJ Publishing Group; 2001. p. 157–75.CrossRefGoogle Scholar
  62. 62.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.PubMedCrossRefGoogle Scholar
  63. 63.
    Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004;74:106–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Halldorsson BV, Bafna V, Lippert R, Schwartz R, De La Vega FM, Clark AG, et al. Optimal haplotype block-free selection of tagging SNPs for genome-wide association studies. Genome Res. 2004;14:1633–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007;39:984–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet. 2007;39:989–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet. 2008;40:623–30.PubMedCrossRefGoogle Scholar
  68. 68.
    Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, Haq N, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 2008;40:631–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Jaeger E, Webb E, Howarth K, Carvajal-Carmona L, Rowan A, Broderick P, et al. Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat Genet. 2008;40:26–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet. 2007;39:1315–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Houlston RS, Webb E, Broderick P, Pittman AM, DiBernardo MC, Lubbe S, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008;40:1426–35.PubMedCrossRefGoogle Scholar
  72. 72.
    Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE, et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst. 2008;100:962–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Haiman CA, Le Marchand L, Yamamato J, Stram DO, Sheng X, Kolonel LN, et al. A common genetic risk factor for colorectal and prostate cancer. Nat Genet. 2007;39:954–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Hunter DJ. Gene–environment interactions in human diseases. Nat Rev Genet. 2005;6:287–98.PubMedCrossRefGoogle Scholar
  75. 75.
    Chen J, Giovannucci E, Kelsey K, Rimm EB, Stampfer MJ, Colditz GA, et al. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res. 1996;56:4862–4.PubMedGoogle Scholar
  76. 76.
    Chan AT, Tranah GJ, Giovannucci EL, Artigas C, Hunter DJ, Fuchs C, et al. Genetic variants in the UGT1A6 enzyme, aspirin use, and the risk of colorectal adenoma. J Natl Cancer Inst. 2005;97:457–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Ma J, Stampfer MJ, Giovannucci E, et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 1997;57:1098–102.PubMedGoogle Scholar
  78. 78.
    Brown JR, DuBois RN. COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol. 2005;23:2840–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Chan TA. Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. Lancet Oncol. 2002;3:166–74.PubMedCrossRefGoogle Scholar
  80. 80.
    Ulrich CM, Bigler J, Sparks R, Whitton J, Sibert JG, Goode EL, et al. Polymorphisms in PTGS1 (=COX-1) and risk of ­colorectal polyps. Cancer Epidemiol Biomarkers Prev. 2004;13:889–93.PubMedGoogle Scholar
  81. 81.
    Ulrich CM, Whitton J, Yu JH, Sibert J, Sparks R, Potter JD, et al. PTGS2 (COX-2) −765G > C promoter variant reduces risk of colorectal adenoma among nonusers of nonsteroidal anti-inflammatory drugs. Cancer Epidemiol Biomarkers Prev. 2005;14:616–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Ulrich CM, Bigler J, Bostick R, Fosdick L, Potter JD. Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res. 2002;62:3361–4.PubMedGoogle Scholar
  83. 83.
    Koushik A, Kraft P, Fuchs CS, Hankinson SE, Willette WC, Giovannucci EL, et al. Nonsynonymous polymorphisms in genes in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:2408–17.PubMedCrossRefGoogle Scholar
  84. 84.
    Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL, et al. Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Res. 2007;67:1395–404.PubMedCrossRefGoogle Scholar
  85. 85.
    Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med. 2003;348:883–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Baron JA, Cole BF, Sandler RS, Haile RW, Annen D, Bresalier R, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003;348:891–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Martinez ME, O’Brien TG, Fultz KE, Babbar N, Yerushalmi H, Qu N, et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc Natl Acad Sci USA. 2003;100:7859–64.PubMedCrossRefGoogle Scholar
  88. 88.
    Barry EL, Baron JA, Bhat S, Grau MV, Burke CA, Sandler RS, et al. Ornithine decarboxylase polymorphism modification of response to aspirin treatment for colorectal adenoma prevention. J Natl Cancer Inst. 2006;98:1494–500.PubMedCrossRefGoogle Scholar
  89. 89.
    Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest. 1998;101:847–54.PubMedCrossRefGoogle Scholar
  90. 90.
    Ando Y, Ueoka H, Sugiyama T, Ichiki M, Shimokata K, Hasegawa Y. Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther Drug Monit. 2002;24:111–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Bosma PJ, Chowdhury JR, Bakker C, Gantla S, DeBoer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333:1171–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ, Sawa T, Muro K, Ueoka H, et al. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 1994;54:3723–5.PubMedGoogle Scholar
  93. 93.
    Ando Y, Saka H, Ando M, et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 2000;60:6921–6.PubMedGoogle Scholar
  94. 94.
    Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2002;2:43–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22:1382–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D’Andrea M, et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol. 2006;24:3061–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Jakobsen A, Nielsen JN, Gyldenkerne N, Lindeberg J. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphism in normal tissue as predictors of fluorouracil sensitivity. J Clin Oncol. 2005;23:1365–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Dotor E, Cuatrecases M, Martinez-Iniesta M, Navarro M, Vilardell F, Guino E, et al. Tumor thymidylate synthase 1494del6 genotype as a prognostic factor in colorectal cancer patients receiving fluorouracil-based adjuvant treatment. J Clin Oncol. 2006;24:1603–11.PubMedCrossRefGoogle Scholar
  99. 99.
    Etienne MC, Formento JL, Chazal M, Franoual M, Magne N, Formento P, et al. Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics. 2004;14:785–92.PubMedCrossRefGoogle Scholar
  100. 100.
    Viguier J, Boige V, Miquel C, Pocard M, Giraudeau B, Sabourin JC, et al. ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin Cancer Res. 2005;11:6212–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang W, Gordon M, Press OA, Rhodes K, Vall bohmer D, Yang DY, et al. Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with Cetuximab. Pharmacogenet Genomics. 2006;16:475–83.PubMedCrossRefGoogle Scholar
  102. 102.
    Chao C, Zhang ZF, Berthiller J, Boffetta P, Hashibe M. NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancers: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15:979–87.PubMedCrossRefGoogle Scholar
  103. 103.
    Castellvi-Bel S, Castells A, de Cid R, Munoz J, Balaguer F, Gonzalo V, et al. Association of the Arlts1 Cys148arg variant with sporadic and familial colorectal cancer. Carcinogenesis. 2007;28:1687–91.PubMedCrossRefGoogle Scholar
  104. 104.
    Shin Y, Kim IJ, Kang HC, Park JH, Park HW, Jang SG, et al. A functional polymorphism (-347G→GA) in the E-cadherin gene is associated with colorectal cancer. Carcinogenesis. 2004;25:2173–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Kilpivaara O, Alhopuro P, Vahteristo P, Aaltonen LA, Nevanlinna H. CHEK2 I157T associates with familial and sporadic colorectal cancer. J Med Genet. 2006;43:e34.PubMedCrossRefGoogle Scholar
  106. 106.
    Gemignani F, Landi S, Moreno V, Gemignani F, Landi S, Moreno V, et al. Polymorphisms of the dopamine receptor gene DRD2 and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2005;14:1633–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Slattery ML, Sweeney C, Murtaugh M, Mak N, Wolff RK, Potter JD, et al. Associations between ERalpha, ERbeta, and AR genotypes and colon and rectal cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:2936–42.PubMedCrossRefGoogle Scholar
  108. 108.
    Yamamoto H, Hanafusa H, Ouchida M, Yano M, Suzuki H, Murakami M, et al. Single nucleotide polymorphisms in the EXO1 gene and risk of colorectal cancer in a Japanese population. Carcinogenesis. 2005;26:411–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Jang SG, Kim IJ, Kang HC, Park HW, Ahn SA, Yoon HJ, et al. GSTT2 promoter polymorphisms and colorectal cancer risk. BMC Cancer. 2007;7:16.PubMedCrossRefGoogle Scholar
  110. 110.
    Berndt SI, Platz EA, Fallin MD, Thuita LW, Hoffman SC, Helzlsouer KJ. Mismatch repair polymorphisms and the risk of colorectal cancer. Int J Cancer. 2007;120:1548–54.PubMedCrossRefGoogle Scholar
  111. 111.
    Hinoda Y, Okayama N, Takano N, Fujimura K, Suehiro Y, Hamanaka Y, et al. Association of functional polymorphisms of matrix metalloproteinase (MMP)-1 and MMP-3 genes with colorectal cancer. Int J Cancer. 2002;102:526–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Elander N, Soderkvist P, Fransen K. Matrix metalloproteinase (MMP)-1, -2, -3 and -9 promoter polymorphisms in colorectal cancer. Anticancer Res. 2006;26:791–5.PubMedGoogle Scholar
  113. 113.
    Le Marchand L, Kolonel LN, Henderson BE, Wilkens LR. Association of an exon 1 polymorphism in the IGFBP3 gene with circulating IGFBP-3 levels and colorectal cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2005;14:1319–21.PubMedCrossRefGoogle Scholar
  114. 114.
    Morimoto LM, Newcomb PA, White E, Bigler J, Potter JD. Insulin-like growth factor polymorphisms and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2005;14:1204–11.PubMedCrossRefGoogle Scholar
  115. 115.
    Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, DeOca J, et al. Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Res. 2003;63:3560–6.PubMedGoogle Scholar
  116. 116.
    Slattery ML, Samowitz W, Curtin K, Mak N, Hoffman M, Caan B, et al. Associations among IRS1, IRS2, IGF1, and IGFBP3 genetic polymorphisms and colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:1206–14.PubMedGoogle Scholar
  117. 117.
    Tranah GJ, Bugni J, Giovannucci E, Ma J, Fuchs L, Hines L, et al. O6-methylguanine-DNA methyltransferase Leu84Phe and Ile143Val polymorphisms and risk of colorectal cancer in the Nurses’ Health Study and Physicians’ Health Study (United States). Cancer Causes Control. 2006;17:721–31.PubMedCrossRefGoogle Scholar
  118. 118.
    Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I, et al. Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res. 2006;12:2101–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Koh WP, Yuan JM, Van Den Berg D, Ingles SA, Yu MC. Peroxisome proliferator-activated receptor (PPAR) gamma gene polymorphisms and colorectal cancer risk among Chinese in Singapore. Carcinogenesis. 2006;27:1797–802.PubMedCrossRefGoogle Scholar
  120. 120.
    Tsuge M, Hamamoto R, Silva FP, Ohnishi Y, Chayama K, Kamatani N, et al. A variable number of tandem repeats polymorphism in an E2F-1 binding element in the 5′ flanking region of SMYD3 is a risk factor for human cancers. Nat Genet. 2005;37:1104–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Chung SJ, Kim JS, Jung HC, Song IS. Transforming growth factor-[beta]1 −509T reduces risk of colorectal cancer, but not adenoma in Koreans. Cancer Sci. 2007;98:401–4.PubMedCrossRefGoogle Scholar
  122. 122.
    Chen J, Hunter DJ, Stampfer MJ, Kyte C, Chan W, Wetmur JG, et al. Polymorphism in the thymidylate synthase promoter enhancer region modifies the risk and survival of colorectal cancer. Cancer Epidemiol BiomarkersPrev. 2003;12:958–62.Google Scholar
  123. 123.
    Stoehlmacher J, Mandola MV, Yun J, et al. Alterations of the thymidylate synthase (TS) pathway and colorectal cancer risk – the impact of three TS polymorphisms. Proc Am Assoc Cancer Res. 2003;44:A2614.Google Scholar
  124. 124.
    Sweeney C, Curtin K, Murtaugh MA, Caan BJ, Potter JD, Slattery ML. Haplotype analysis of common vitamin D receptor variants and colon and rectal cancers. Cancer Epidemiol Biomarkers Prev. 2006;15:744–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Wong HL, Seow A, Arakawa K, Lee HP, Yu MC, Ingles SA. Vitamin D receptor start codon polymorphism and colorectal cancer risk: effect modification by dietary calcium and fat in Singapore Chinese. Carcinogenesis. 2003;24:1091–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Jin MJ, Chen K, Song L, Fan CH, Chen Q, Zhu YM, et al. The association of the DNA repair gene XRCC3 Thr241Met polymorphism with susceptibility to colorectal cancer in a Chinese population. Cancer Genet Cytogenet. 2005;163:38–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Section of Cancer GeneticsInstitute of Cancer ResearchSurreyUK

Personalised recommendations