MUTYH-Associated Polyposis

Chapter
Part of the M.D. Anderson Solid Tumor Oncology Series book series (MDA, volume 5)

Abstract

MUTYH-associated polyposis (MAP) is an autosomal recessive disorder characterised by multiple colorectal adenomas and carcinoma. It is caused by inherited mutations in the human MutY homologue gene (MUTYH). MUTYH functions as a base excision repair DNA glycosylase that excises adenines misincorporated opposite 8-oxo-7,8-dihydro-2’-deoxyguanosine, one of the most stable products of oxidative DNA damage. The failure to correct this mispair is thought to cause the characteristic signature of G:C to T:A mutations found in MAP-associated tumours.

Keywords

MUTYH MYH MAP Colorectal cancer APC FAP 

Notes

Acknowledgements

Professor Cheadle is supported by Cancer Research UK, Cancer Research Wales and the Wales Gene Park.

References

  1. 1.
    Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet. 2001;10:721–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Peltomaki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet. 2001;10:735–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat Genet. 2002;30:227–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Cheadle JP, Krawczak M, Thomas MW, Hodges AK, Al-Tassan N, Fleming N, et al. Different combinations of biallelic APC mutation confer different growth advantages in colorectal tumours. Cancer Res. 2002;62:363–6.PubMedGoogle Scholar
  6. 6.
    Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science. 2001;291:1284–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Ames BN, Gold LS. Endogenous mutagens and the causes of aging and cancer. Mutat Res. 1991;250:3–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991;349:431–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Nghiem Y, Cabrera M, Cupples CG, Miller JH. The mutY gene: A mutator locus in Eschericia coli that generates G:C to T:A transversions. Proc Natl Acad Sci USA. 1998;85:2709–13.CrossRefGoogle Scholar
  12. 12.
    Michaels ML, Miller JH. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7, 8-dihydro-8-oxoguanine). J Bacteriol. 1992;174:6321–5.PubMedGoogle Scholar
  13. 13.
    Moriya M, Grollman AP. Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C to T:A transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet. 1993;239:72–6.PubMedGoogle Scholar
  14. 14.
    Roldan-Arjona T, Wei YF, Carter KC, Klungland A, Anselmino C, Wang RP, et al. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Natl Acad Sci USA. 1997;94:8016–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Slupska MM, Baikalov C, Luther WM, Chiang J-H, Wei Y-F, Miller JH. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J Bactiol. 1996;178:3885–92.Google Scholar
  16. 16.
    Sakumi K, Furuichi M, Tsuzuki T, Kakuma T, Kawabata S, Maki H, et al. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA-synthesis. J Biol Chem. 1993;268:23524–30.PubMedGoogle Scholar
  17. 17.
    Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C→T:A mutations. Hum Mol Genet. 2002;11:2961–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Sampson JR, Dolwani S, Jones S, Eccles D, Ellis A, Evans DG, et al. Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet. 2003;362:39–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RK, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med. 2003;348:791–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Isidro G, Laranjeira F, Pires A, Leite J, Regateiro F, Castro e Sousa F, et al. Germline MUTYH (MYH) mutations in Portuguese individuals with multiple colorectal adenomas. Hum Mutat. 2004;24:353–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Venesio T, Molatore S, Cattaneo F, Arrigoni A, Risio M, Ranzani GN. High frequency of MYH gene mutations in a subset of patients with familial adenomatous polyposis. Gastroenterology. 2004;126:1681–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Gismondi V, Meta M, Bonelli L, Radice P, Sala P, Bertario L, et al. Prevalence of the Y165C, G382D and 1395delGGA germline mutations of the MYH gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. Int J Cancer. 2004;109:680–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Eliason K, Hendrickson BC, Judkins T, Norton M, Leclair B, Lyon E, et al. The potential for increased clinical sensitivity in genetic testing for polyposis colorectal cancer through the analysis of MYH mutations in North American patients. J Med Genet. 2005;42:95–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Cheadle JP, Sampson JR. Exposing the MYtH about base excision repair and human inherited disease. Hum Mol Genet. 2003;12:R159–65.PubMedCrossRefGoogle Scholar
  25. 25.
    Croitoru ME, Cleary SP, Di Nicola N, Manno M, Selander T, Aronson M, et al. Association between biallelic and monoallelic germline MYH gene mutations and colorectal cancer risk. J Natl Cancer Inst. 2004;96:1631–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Farrington SM, Tenesa A, Barnetson R, Wiltshire A, Prendergast J, Porteous M, et al. Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet. 2005;77:112–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Babbs CF. Free radicals and the etiology of colon cancer. Free Radic Biol Med. 1990;8:191–200.PubMedCrossRefGoogle Scholar
  28. 28.
    Halford SE, Rowan AJ, Lipton L, Sieber OM, Pack K, Thomas HJ, et al. Germline mutations but not somatic changes at the MYH locus contribute to the pathogenesis of unselected colorectal cancers. Am J Pathol. 2003;162:1545–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Eliason K, Judkins T, Hendrickson BC, Lyon E, Norton M, Thompson V, et al. Identification of novel mutations in MYH in North American patients demonstrates a requirement for whole-gene mutation screening [abstract 476]. Presented at the annual meeting of The American Society of Human Genetics, October 26th–30th 2004, Toronto, Canada.Google Scholar
  30. 30.
    Wang L, Baudhuin LM, Boardman LA, Steenblock KJ, Petersen GM, Halling KC, et al. MYH mutations in patients with attenuated and classic polyposis and with young-onset colorectal cancer without polyps. Gastroenterology. 2004;127:9–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Fleischmann C, Peto J, Cheadle J, Shah B, Sampson J, Houlston RS. Comprehensive analysis of the contribution of germline MYH variation to early-onset colorectal cancer. Int J Cancer. 2004;109:554–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Al-Tassan N, Eisen T, Maynard J, Bridle H, Shah B, Fleischmann C, et al. Inherited variants in MYH are unlikely to contribute to the risk of lung carcinoma. Hum Genet. 2004;114:207–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim CJ, Cho YG, Park CH, Kim SY, Nam SW, Lee SH, et al. Genetic alterations of the MYH gene in gastric cancer. Oncogene. 2004;23:6820–2.PubMedCrossRefGoogle Scholar
  34. 34.
    Aceto GM, Curia C, Veschi S, De Lellis L, Mammarella S, Catalano T, et al. Mutations of APC and MYH in unrelated Italian patients with adenomatous polyposis coli. Hum Mutat. 2005;26:394.PubMedCrossRefGoogle Scholar
  35. 35.
    Kairupan CF, Meldrum CJ, Crooks R, Milward EA, Spigelman AD, Burgess B, et al. Mutation analysis of the MYH gene in an Australian series of colorectal polyposis patients with or without germline APC mutations. Int J Cancer. 2005;116:73–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhou XL, Djureinovic T, Werelius B, Lindmark G, Sun XF, Lindblom A. Germline mutations in the MYH gene in Swedish familial and sporadic colorectal cancer. Genet Test. 2005;9:147–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Miyaki M, Iijima T, Yamaguchi T, Hishima T, Tamura K, Utsunomiya J, et al. Germline mutations of the MYH gene in Japanese patients with multiple colorectal adenomas. Mutat Res. 2005;578:430–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Nielsen M, Franken PF, Reinards TH, Weiss MM, Wagner A, van der Klift H, et al. Multiplicity in polyp count and extracolonic manifestations in 40 Dutch patients with MYH associated polyposis coli (MAP). J Med Genet. 2005;42:e54.PubMedCrossRefGoogle Scholar
  39. 39.
    Alhopuro P, Parker AR, Lehtonen R, Enholm S, Jarvinen HJ, Mecklin JP, et al. A novel functionally deficient MYH variant in individuals with colorectal adenomatous polyposis. Hum Mutat. 2005;26:393.PubMedCrossRefGoogle Scholar
  40. 40.
    Ponti G, Ponz de Leon M, Maffei S, Pedroni M, Losi L, Di Gregorio C, et al. Attenuated familial adenomatous polyposis and Muir-Torre syndrome linked to compound biallelic constitutional MYH gene mutations. Clin Genet. 2005;68:442–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Kanter-Smoler G, Bjork J, Fritzell K, Engwall Y, Hallberg B, Karlsson G, et al. Novel findings in Swedish patients with MYH-associated polyposis: mutation detection and clinical characterization. Clin Gastroenterol Hepatol. 2006;4:499–506.PubMedCrossRefGoogle Scholar
  42. 42.
    Aretz S, Uhlhaas S, Goergens H, Siberg K, Vogel M, Pagenstecher C, et al. MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int J Cancer. 2006;119:807–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Russell AM, Zhang J, Luz J, Hutter P, Chappuis PO, Berthod CR, et al. Prevalence of MYH germline mutations in Swiss APC mutation-negative polyposis patients. Int J Cancer. 2006;118:1937–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Niessen RC, Sijmons RH, Ou J, Olthof SG, Osinga J, Ligtenberg MJ, et al. MUTYH and the mismatch repair system: partners in crime? Hum Genet. 2006;119:206–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Gorgens H, Kruger S, Kuhlisch E, Pagenstecher C, Hohl R, Schackert HK, et al. Microsatellite stable colorectal cancers in clinically suspected hereditary nonpolyposis colorectal cancer patients without vertical transmission of disease are unlikely to be caused by biallelic germline mutations in MYH. J Mol Diagn. 2006;8:178–82.PubMedCrossRefGoogle Scholar
  46. 46.
    Lejeune S, Guillemot F, Triboulet JP, Cattan S, Mouton C, PAFNORD Group, et al. Low frequency of AXIN2 mutations and high frequency of MUTYH mutations in patients with multiple polyposis. Hum Mutat. 2006;27:1064.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang Y, Liu X, Fan Y, Ding J, Xu A, Zhou X, et al. Germline mutations and polymorphic variants in MMR, E-cadherin and MYH genes associated with familial gastric cancer in Jiangsu of China. Int J Cancer. 2006;119:2592–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Bai H, Grist S, Gardner J, Suthers G, Wilson TM, Lu AL. Functional characterization of human MutY homolog (hMYH) missense mutation (R231L) that is linked with hMYH-associated polyposis. Cancer Lett. 2007;250:74–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Croitoru ME, Cleary SP, Berk T, Di Nicola N, Kopolovic I, Bapat B, et al. Germline MYH mutations in a clinic-based series of Canadian multiple colorectal adenoma patients. J Surg Oncol. 2007;95:499–506.PubMedCrossRefGoogle Scholar
  50. 50.
    Cheadle JP, Sampson JR. MUTYH-associated polyposis – from defect in base excision repair to clinical genetic testing. DNA Repair (Amst). 2007;6:274–9.CrossRefGoogle Scholar
  51. 51.
    Sampson JR, Jones S, Dolwani S, Cheadle JP. MutYH (MYH) and colorectal cancer. Biochem Soc Trans. 2005;33:679–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Jones S, Lambert S, Williams GT, Best JM, Sampson JR, Cheadle JP. Increased frequency of the k-ras G12C mutation in MYH polyposis colorectal adenomas. Br J Cancer. 2004;90:1591–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res. 2003;63:7595–9.PubMedGoogle Scholar
  54. 54.
    Cardoso J, Molenaar L, de Menezes RX, van Leerdam M, Rosenberg C, Moslein G, et al. Chromosomal instability in MYH- and APC-mutant adenomatous polyps. Cancer Res. 2006;66:2514–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Parker A, Gu Y, Mahoney W, Lee S-H, Singh KK, Lu A-L. Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long-patch DNA base excision repair. J Biol Chem. 2001;276:5547–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Boldogh I, Milligan D, Soog Lee M, Bassett H, Lloyd RS, McCullough AK. hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs. Nucleic Acids Res. 2001;29:2802–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Shi G, Chang DY, Cheng CC, Guan X, Venclovas C, Lu AL. Physical and functional interactions between MutY glycosylase homologue (MYH) and checkpoint proteins Rad9-Rad1-Hus1. Biochem J. 2006;400:53–62.PubMedCrossRefGoogle Scholar
  58. 58.
    Manuel RC, Lloyd RS. Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY. Biochemistry. 1997;36:11140–52.PubMedCrossRefGoogle Scholar
  59. 59.
    Guan Y, Manuel RC, Arvai AS, Parikh SS, Mol CD, Miller JH, et al. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nat Struct Biol. 1998;5:1058–64.PubMedCrossRefGoogle Scholar
  60. 60.
    Noll DM, Gogos A, Granek JA, Clarke ND. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity of 8-oxoguanine-adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase. Biochemistry. 1999;38:6374–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Nakabeppu Y. Molecular genetics and structural biology of human MutT homolog MTH1. Mutat Res. 2001;477:59–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Volk DE, House PG, Thiviyanathan V, Luxon BA, Zhang S, Lloyd RS, et al. Structural similarities between MutT and the C-terminal domain of MutY. Biochemistry. 2000;39:7331–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Chmiel NH, Golinelli M-P, Francis AW, David SS. Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain. Nucl Acids Res. 2001;29:553–64.PubMedCrossRefGoogle Scholar
  64. 64.
    Fromme JC, Banerjee A, Huang SJ, Verdine GL. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature. 2004;427:652–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Gu Y, Parker A, Wilson TM, Bai H, Chang DY, Lu AL. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem. 2002;277:11135–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Tuo J, Muftuoglu M, Chen C, Jaruga P, Selzer RR, Brosh RM, et al. The Cockayne Syndrome group B gene product is involved in general genome base excision repair of 8-hydroxyguanine in DNA. J Biol Chem. 2001;276:45772–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Le Page F, Randrianarison V, Marot D, Cabannes J, Perricaudet M, Feunteun J, et al. BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells. Cancer Res. 2000;60:5548–52.PubMedGoogle Scholar
  68. 68.
    Chmiel NH, Livingston AL, David SS. Insight into the functional consequences of inherited variants of the hMYH adenine glycosylase associated with colorectal cancer: Complemetation assays with hMYH variants and pre-steady-state kinetics of the corresponding mutated E.coli enzymes. J Mol Biol. 2003;327:431–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Hirano S, Tominaga Y, Ichinoe A, Ushijima Y, Tsuchimoto D, Honda-Ohnishi Y, et al. Mutator phenotype of MUTYH-null mouse embryonic stem cells. J Biol Chem. 2003;278:38121–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Bai H, Jones S, Guan X, Wilson TM, Sampson JR, Cheadle JP, et al. Functional characterization of two human MutY homolog (hMYH) missense mutations (R227W and V232F) that lie within the putative hMSH6 binding domain and are associated with hMYH polyposis. Nucleic Acids Res. 2005;3:597–604.CrossRefGoogle Scholar
  71. 71.
    Kambara T, Whitehall VL, Spring KJ, Barker MA, Arnold S, Wynter CV, et al. Role of inherited defects of MYH in the development of sporadic colorectal cancer. Genes Chromosom Cancer. 2004;40:1–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Webb EL, Rudd MF, Houlston RS. Colorectal cancer risk in monoallelic carriers of MYH variants. Am J Hum Genet. 2006;79:768–71.PubMedCrossRefGoogle Scholar
  73. 73.
    Tenesa A, Campbell H, Barnetson R, Porteous M, Dunlop M, Farrington SM. Association of MUTYH and colorectal cancer. Br J Cancer. 2006;95:239–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Medical GeneticsCardiff UniversityCardiffUK

Personalised recommendations