Advertisement

Basic Sciences and Genetics: Hamartomatous Polyposis

  • James R. HoweEmail author
  • Daniel Calva
Chapter
Part of the M.D. Anderson Solid Tumor Oncology Series book series (MDA, volume 5)

Abstract

It can be challenging to distinguish between the various hamartomatous polyposis syndromes based upon the histology of polyps, as not all patients present with pathognomonic signs of one of these specific conditions. The discovery of several causative genes for the hamartomatous polyposis syndromes has added a new dimension to the classification of these patients, allowing for demarcation on a molecular basis. Clinicians can then be aware of other anomalies to look for, and can perform presymptomatic diagnosis of at-risk individuals. This chapter will cover the history of the discovery of the predisposing genes, the types of mutations found, the function of these genes, and genotype–phenotype correlations identified for the major hamartomatous polyposis syndromes.

Keywords

Juvenile polyposis Cowden syndrome Peutz–Jeghers syndrome Hamartomatous polyposis Genetics Gastric cancer Colorectal cancer SMAD4 Bone morphogenetic protein receptor (BMPR1A) Autosomal dominant 

References

  1. 1.
    Diamond M. Adenoma of the rectum in children: Report of a case in a thirty month old girl. Am J Dis Child. 1939;57:360–67.Google Scholar
  2. 2.
    Roth SI and Helwig EB. Juvenile polyps of the colon and rectum. Cancer. 1963;16:468–79.PubMedCrossRefGoogle Scholar
  3. 3.
    McColl I, Bussey HJR, Veale AMO and Morson BC. Juvenile polyposis coli. Proc R Soc Med. 1964;57:896–97.PubMedGoogle Scholar
  4. 4.
    Smilow PC, Pryor CA and Swinton NW. Juvenile polyposis coli: A report of three patients in three generations of one family. Dis Colon Rectum. 1966;9:248–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Veale AMO, McColl I, Bussey HJR and Morson BC. Juvenile polyposis coli. J Med Genet. 1966;3:5–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Sachatello CR, Pickren JW and Grace JT. Generalized juvenile gastrointestinal polyposis. Gastroenterology. 1970;58:699–708.PubMedGoogle Scholar
  7. 7.
    Stemper TJ, Kent TH and Summers RW. Juvenile polyposis and gastrointestinal carcinoma. Ann Intern Med. 1975;83:639–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Bussey HJ, Veale AM and Morson BC. Genetics of gastrointestinal polyposis. Gastroenterology. 1978;74(6):1325–30.PubMedGoogle Scholar
  9. 9.
    Hofting I, Pott G and Stolte M. Das Syndrom der Juvenilen Polyposis. Leber Magen Darm. 1993;23(3):107–08.PubMedGoogle Scholar
  10. 10.
    Coburn MC, Pricolo VE, DeLuca FG and Bland KI. Malignant potential in intestinal juvenile polyposis syndromes. Ann Surg Oncol. 1995;2(5):386–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Restrepo C, Moreno J, Duque E, Cuello C, Amsel J and Correa P. Juvenile colonic polyposis in Colombia. Dis Colon Rectum. 1978;21:600–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Desai DC, Murday V, Phillips RKS, Neale KF, Milla P and Hodgson SV. A survey of phenotypic features in juvenile polyposis. J Med Genet. 1998;35:476–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Howe JR, Mitros FA and Summers RW. The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann Surg Oncol. 1998;5:751–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Leggett BA, Thomas LR, Knight N, Healey S, Chenevix-Trench G and Searle J. Exclusion of APC and MCC as the gene defect in one family with familial juvenile polyposis. Gastroenterology. 1993;105(5):1313–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Jacoby RF, Schlack S, Sekhon G and Laxova R. Del(10)(q22.3q24.1) associated with juvenile polyposis. Am J Med Genet. 1997;70:361–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Nelen MR, Padberg GW, Peeters EA, Lin AY, van den Helm B, Frants RR, et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet. 1996;13(1):114–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Marsh DJ, Roth S, Lunetta KL, Hemminki A, Dahia PL, Sistonen P, et al. Exclusion of PTEN and 10q22-24 as the susceptibility locus for juvenile polyposis syndrome. Cancer Res. 1997;57(22):5017–21.PubMedGoogle Scholar
  18. 18.
    Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, et al. Inherited mutations in PTEN that are associated with breast cancer, Cowden disease, and juvenile polyposis. Am J Med Hum Genet. 1997;61:1254–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Olschwang S, Serova-Sinilnikova OM, Lenoir GM and Thomas G. PTEN germ-line mutations in juvenile polyposis coli. Nat Genet. 1998;18:12–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Eng C and Ji H. Molecular classification of the inherited hamartoma polyposis syndromes: Clearing the muddied waters. Am J Med Hum Genet. 1998;62:1020–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Howe JR, Ringold JC, Summers RW, Mitros FA, Nishimura DY, Stone EM. A gene for familial juvenile polyposis maps to chromosome 18q21.1. Am J Med Hum Genet. 1998;62:1129–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Riggins GJ, Hamilton SR, Kinzler KW, Vogelstein B. Normal PTEN gene in juvenile polyposis. J Neg Observ Genet Oncol. 1997;1:1.Google Scholar
  23. 23.
    Woodford-Richens K, Bevan S, Churchman M, Dowling B, Jones D, Norbury CG, et al. Analysis of genetic and phenotypic heterogeneity in juvenile polyposis. Gut. 2000;46(5):656–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Howe JR, Sayed MG, Ahmed AF, Ringold J, Larsen-Haidle J, Merg A, et al. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet. 2004;41(7):484–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998;280:1086–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Houlston R, Bevan S, Williams A, Young J, Dunlop M, Rozen P, et al. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum Mol Genet. 1998;7(12):1907–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Friedl W, Kruse R, Uhlhaas S, Stolte M, Schartmann B, Keller KM, et al. Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients. Genes, Chromosomes & Cancer. 1999;25(4):403–06.PubMedCrossRefGoogle Scholar
  28. 28.
    Roth S, Sistonen P, Salovaara R, Hemminki A, Loukola A, Johansson M, et al. SMAD genes in juvenile polyposis. Genes Chromosomes Cancer. 1999;26(1):54–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim IJ, Ku JL, Yoon KA, Heo SC, Jeong SY, Choi HS, et al. Germline mutations of the dpc4 gene in Korean juvenile polyposis patients. In J Cancer. 2000;86(4):529–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Howe JR, Shellnut J, Wagner B, Ringold JC, Sayed MG, Ahmed AF, et al. Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot. Am J Med Hum Genet. 2002;70:1357–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Pyatt RE, Pilarski R, Prior TW. Mutation screening in juvenile polyposis syndrome. J Mol Diagn. 2006;8(1):84–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Hahn SA, Shamsul Hoque ATM, Moskaluk CA, da Costa LT, Scutte M, Rozenblum E, et al. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 1996;56:490–94.PubMedGoogle Scholar
  33. 33.
    Hahn SA, Shutte M, Shamsul Hoque ATM, Moskaluk CA, da Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Thiagalingam S, Lebauer C, Leach FS, Schutte M, Hahn SA, Overhauser J, et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet. 1996;13:343–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K, et al. Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology. 1996;111:1369–72.PubMedCrossRefGoogle Scholar
  36. 36.
    MacGrogan D, Pegram M, Slamon D, Bookstein R. Comparative mutational analysis of DPC4 (Smad4) in prostatic and colorectal carcinomas. Oncogene. 1997;15:1111–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Hoque ATMS, Hahn SA, Schutte M, Kern SE. DPC4 gene mutation in colitis associated neoplasia. Gut. 1997;40:120–22.PubMedGoogle Scholar
  38. 38.
    Derynck R, Gelbart WM, Harland RM, Heldin CH, Kern SE, Massague J, et al. Nomenclature: vertebrate mediators of TGFβ family signals. Cell. 1996;87(2):173.PubMedCrossRefGoogle Scholar
  39. 39.
    Heldin C-H, Miyazono K, Ten Dijke P. TGF-β signaling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Bevan S, Woodford-Richens K, Rozen P, Eng C, Young J, Dunlop M, et al. Screening SMAD1, SMAD2, SMAD3, and SMAD5 for germline mutations in juvenile polyposis syndrome. Gut. 1999;45(3):406–08.PubMedCrossRefGoogle Scholar
  41. 41.
    Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet. 2001;28:184–87.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou XP, Woodford-Richens K, Lehtonen R, Kurose K, Aldred M, Hampet H, et al. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan–Riley–Ruvalcaba syndromes. Am J Hum Genet. 2001;69(4):704–11.PubMedCrossRefGoogle Scholar
  43. 43.
    Friedl W, Uhlhaas S, Schulman K, et al. Juvenile polyposis: massive gastric polyposis is more common in MADH4 mutation carriers than in BMPR1A mutation carriers. Hum Genet. 2002;111:108–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Ten Dijke P, Ichijo H, Franzen P, et al. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene. 1993;8:2879–87.PubMedGoogle Scholar
  45. 45.
    Mehra A, Wrana JL. TGF-b and the Smad signal transduction pathway. Biochem Cell Biol. 2002;80:605–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Reddi AH. Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev. 1997;8(1):11–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Kim IJ, Park JH, Kang HC, et al. Identification of a novel BMPR1A germline mutation in a Korean juvenile polyposis patient without SMAD4 mutation. Clin Genet. 2003;63(2):126–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Delnatte C, Sanlaville D, Mougenot JF, et al. Contiguous gene deletion within chromosome arm 10q is associated with juvenile polyposis of infancy, reflecting cooperation between the BMPR1A and PTEN tumor-suppressor genes. Am J Hum Genet. 2006;78(6):1066–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Salviati L, Patricelli M, Guariso G, et al. Deletion of PTEN and BMPR1A on chromosome 10q23 is not always associated with juvenile polyposis of infancy. Am J Hum Genet. 2006;79(3):593–6. author reply 596–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Sayed MG, Ahmed AF, Ringold JC, et al. Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann Surg Oncol. 2002;9(9):901–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Sweet K, Willis J, Zhou XP, et al. Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA. 2005;294(19):2465–73.PubMedCrossRefGoogle Scholar
  52. 52.
    McAllister KA, Grogg KM, Johnson DW, et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8(4):345–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Howe JR, Haidle JL, Lal G, et al. ENG mutations in MADH4/BMPR1A mutation negative patients with juvenile polyposis. Clin Genet. 2007;71(1):91–2.PubMedCrossRefGoogle Scholar
  54. 54.
    Gallione CJ, Repetto GM, Legius E, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Gallione CJ, Richards JA, Letteboer TG, et al. SMAD4 mutations found in unselected HHT patients. J Med Genet. 2006;43(10):793–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Lloyd KM, 2nd Dennis M. Cowden’s disease. a possible new symptom complex with multiple system involvement. Ann Intern Med. 1963;58:136–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Weary PE, Gorlin RJ, Gentry WC, Jr et al. Multiple hamartoma syndrome (Cowden’s disease). Arch Dermatol. 1972;106(5):682–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Gentry WC, Jr Eskritt NR, Gorlin RJ. Multiple hamartoma syndrome (Cowden disease). Arch Dermatol. 1974;109(4):521–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Salem OS, Steck WD. Cowden’s disease (multiple hamartoma and neoplasia syndrome). J Am Acad Dermatol. 1983;8(5):686–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Allen BS, Fitch MH, Smith JG. Jr Multiple hamartoma syndrome. A report of a new case with associated carcinoma of the uterine cervix and angioid streaks of the eyes. J Am Acad Dermatol. 1980;2(4):303–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Starink TM, van der Veen JP, Arwert F, et al. The Cowden syndrome: a clinical and genetic study in 21 patients. Clin Genet. 1986;29(3):222–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Eng C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J Med Genet. 2000;37(11):828–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res. 1997;57(11):2124–9.PubMedGoogle Scholar
  64. 64.
    Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16(1):64–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Nelen MR, van Staveren WC, Peeters EA, et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet. 1997;6(8):1383–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Myers MP, Pass I, Batty IH, et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A. 1998;95(23):13513–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Weng LP, Smith WM, Brown JL, Eng C. PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex formation in a breast cancer model. Hum Mol Genet. 2001;10(6):605–16.PubMedCrossRefGoogle Scholar
  70. 70.
    Marsh DJ, Coulon V, Lunetta KL, et al. Mutation spectrum and genotype–phenotype analyses in Cowden disease and Bannayan–Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet. 1998;7(3):507–15.PubMedCrossRefGoogle Scholar
  71. 71.
    Eng C. Cowden syndrome. J Genet Couns. 1997;6(2):181–92.CrossRefGoogle Scholar
  72. 72.
    Marsh DJ, Dahia PL, Caron S, et al. Germline PTEN mutations in Cowden syndrome-like families. J Med Genet. 1998;35(11):881–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Nelen MR, Kremer H, Konings IB, et al. Novel PTEN mutations in patients with Cowden disease: absence of clear genotype–phenotype correlations. Eur J Hum Genet. 1999;7(3):267–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Riley HD, Smith WR. Macrocephaly, pseudopapilledema and multiple hemangiomata: a previously undescribed heredofamilial syndrome. Pediatrics. 1960;26:293–300.Google Scholar
  75. 75.
    Bannayan GA. Lipomatosis, angiomatosis, and macrencephalia. A previously undescribed congenital syndrome. Arch Pathol. 1971;92(1):1–5.PubMedGoogle Scholar
  76. 76.
    Zonana J, Rimoin DL, Davis DC. Macrocephaly with multiple lipomas and hemangiomas. J Pediatr. 1976;89(4):600–3.PubMedCrossRefGoogle Scholar
  77. 77.
    Ruvalcaba RH, Myhre S, Smith DW. Sotos syndrome with intestinal polyposis and pigmentary changes of the genitalia. Clin Genet. 1980;18(6):413–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Gorlin RJ, Cohen MM, Jr Condon LM, Burke BA. Bannayan–Riley–Ruvalcaba syndrome. Am J Med Genet. 1992;44(3):307–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Cohen MM. Jr Bannayan–Riley–Ruvalcaba syndrome: renaming three formerly recognized syndromes as one etiologic entity. Am J Med Genet. 1990;35(2):291–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Fargnoli MC, Orlow SJ, Semel-Concepcion J, Bolognia JL. Clinicopathologic findings in the Bannayan–Riley–Ruvalcaba syndrome. Arch Dermatol. 1996;132(10):1214–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Zigman AF, Lavine JE, Jones MC, et al. Localization of the Bannayan–Riley–Ruvalcaba syndrome gene to chromosome 10q23. Gastroenterology. 1997;113(5):1433–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Marsh DJ, Dahia PL, Zheng Z, et al. Germline mutations in PTEN are present in Bannayan–Zonana syndrome. Nat Genet. 1997;16(4):333–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Marsh DJ, Kum JB, Lunetta KL, et al. PTEN mutation spectrum and genotype–phenotype correlations in Bannayan–Riley–Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet. 1999;8(8):1461–72.PubMedCrossRefGoogle Scholar
  84. 84.
    Conner JT. Aesculapian Society of London. Lancet. 1895;2:1169.Google Scholar
  85. 85.
    Jeghers H, McKusick VA, Katz KH. Generalized intestinal polyposis and melanin spots of oral mucosa, lips, and digits. N Engl J Med. 1949;241(993–1005):1031–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Peutz JL. A very remarkable case of familial polyposis of mucous membrane of intestinal tract and accompanied by peculiar pigmentations of skin and mucous membrane. Ned Tijdschr Geneeskd. 1921;10:134–46.Google Scholar
  87. 87.
    Bruwer A, Bargen JA, Kierland RR. Surface pigmentation and generalized intestinal polyposis; (Peutz–Jeghers syndrome). Mayo Clin Proc. 1954;29(6):168–71.Google Scholar
  88. 88.
    Hemminki A, Tomlinson I, Markie D, et al. Localization of a susceptibility locus for Peutz–Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat Genet. 1997;15:87–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Amos CI, Bali D, Thiel TJ, et al. Fine mapping of a genetic locus for Peutz–Jeghers syndrome on chromosome 19p. Cancer Res. 1997;57(17):3653–6.PubMedGoogle Scholar
  90. 90.
    Mehenni H, Blouin J-L, Radhakrishna U, et al. Peutz–Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. Am J Hum Genet. 1997;61:1327–34.PubMedCrossRefGoogle Scholar
  91. 91.
    Olschwang S, Markie D, Seal S, et al. Peutz–Jeghers disease: most, but not all, families are compatible with linkage to 19p13.3. J Med Genet. 1998;35(1):42–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature. 1998;391:184–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Jenne DE, Reimann H, Nezu J-I, et al. Peutz–Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18:38–43.PubMedCrossRefGoogle Scholar
  94. 94.
    Gruber SB, Entius MM, Petersen GM, et al. Pathogenesis of adenocarcinoma in Peutz–Jeghers syndrome. Cancer Res. 1998;58(23):5267–70.PubMedGoogle Scholar
  95. 95.
    Nakagawa H, Koyama K, Miyoshi Y, et al. Nine novel germline mutations of STK11 in ten families with Peutz–Jeghers syndrome. Hum Genet. 1998;103(2):168–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Westerman AM, Entius MM, Boor PP, et al. Novel mutations in the LKB1/STK11 gene in Dutch Peutz–Jeghers families. Hum Mutat. 1999;13(6):476–81.PubMedCrossRefGoogle Scholar
  97. 97.
    Wang ZJ, Churchman M, Avizienyte E, et al. Germline mutations of the LKB1 (STK11) gene in Peutz–Jeghers patients. J Med Genet. 1999;36(5):365–8.PubMedGoogle Scholar
  98. 98.
    Miyaki M, Iijima T, Hosono K, et al. Somatic mutations of LKB1 and beta-catenin genes in gastrointestinal polyps from patients with Peutz–Jeghers syndrome. Cancer Res. 2000;60(22):6311–3.PubMedGoogle Scholar
  99. 99.
    Boardman LA, Couch FJ, Burgart LJ, et al. Genetic heterogeneity in Peutz–Jeghers syndrome. Hum Mutat. 2000;16(1):23–30.PubMedCrossRefGoogle Scholar
  100. 100.
    Lim W, Hearle N, Shah B, et al. Further observations on LKB1/STK11 status and cancer risk in Peutz–Jeghers syndrome. Br J Cancer. 2003;89(2):308–13.PubMedCrossRefGoogle Scholar
  101. 101.
    Scott RJ, Crooks R, Meldrum CJ, et al. Mutation analysis of the STK11/LKB1 gene and clinical characteristics of an Australian series of Peutz–Jeghers syndrome patients. Clin Genet. 2002;62(4):282–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Jiang CY, Esufali S, Berk T, et al. STK11/LKB1 germline mutations are not identified in most Peutz–Jeghers syndrome patients. Clin Genet. 1999;56(2):136–41.PubMedCrossRefGoogle Scholar
  103. 103.
    Esteller M, Avizienyte E, Corn PG, et al. Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz–Jeghers syndrome. Oncogene. 2000;19(1):164–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Le Meur N, Martin C, Saugier-Veber P, et al. Complete germline deletion of the STK11 gene in a family with Peutz–Jeghers syndrome. Eur J Hum Genet. 2004;12(5):415–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Aretz S, Stienen D, Uhlhaas S, et al. High proportion of large genomic STK11 deletions in Peutz–Jeghers syndrome. Hum Mutat. 2005;26(6):513–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Mehenni H, Gehrig C, Nezu J, et al. Loss of LKB1 kinase activity in Peutz–Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Hum Genet. 1998;63(6):1641–50.PubMedCrossRefGoogle Scholar
  107. 107.
    Boudeau J, Kieloch A, Alessi DR, et al. Functional analysis of LKB1/STK11 mutants and two aberrant isoforms found in Peutz–Jeghers Syndrome patients. Hum Mutat. 2003;21(2):172.PubMedCrossRefGoogle Scholar
  108. 108.
    Entius MM, Keller JJ, Westerman AM, et al. Molecular genetic alterations in hamartomatous polyps and carcinomas of patients with Peutz–Jeghers syndrome. J Clin Pathol. 2001;54(2):126–31.PubMedCrossRefGoogle Scholar
  109. 109.
    Amos CI, Keitheri-Cheteri MB, Sabripour M, et al. Genotype–phenotype correlations in Peutz–Jeghers syndrome. J Med Genet. 2004;41(5):327–33.PubMedCrossRefGoogle Scholar
  110. 110.
    Schumacher V, Vogel T, Leube B, et al. STK11 genotyping and cancer risk in Peutz–Jeghers syndrome. J Med Genet. 2005;42(5):428–35.PubMedCrossRefGoogle Scholar
  111. 111.
    Hearle N, Schumacher V, Menko FH, et al. Frequency and spectrum of cancers in the Peutz–Jeghers syndrome. Clin Cancer Res. 2006;12(10):3209–15.PubMedCrossRefGoogle Scholar
  112. 112.
    Miyoshi H, Nakau M, Ishikawa TO, et al. Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res. 2002;62(8):2261–6.PubMedGoogle Scholar
  113. 113.
    Katajisto P, Vaahtomeri K, Ekman N, et al. LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nat Genet. 2008;40(4):455–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Surgical Oncology and Endocrine Surgery, Roy J. and Lucille A. CarverUniversity of Iowa College of MedicineIowa CityUSA
  2. 2.Department of SurgeryUniversity of Iowa Hospitals and ClinicsIowa CityUSA

Personalised recommendations