DNA Mismatch Repair

  • C. Richard BolandEmail author
Part of the M.D. Anderson Solid Tumor Oncology Series book series (MDA, volume 5)


The genome is subject to multiple forms of stress and damage that can lead to alterations in the integrity of DNA. The cell nucleus possesses several complex, integrated enzyme systems that identify altered DNA and repair it or, in the case of overwhelming damage, trigger cell death, which prevents the passage of a mutation to the next generation of cells. These systems are essential for the faithful replication of the genome, and germline defects in these systems give rise to familial cancer syndromes, each with a unique spectrum of neoplasia.


DNA mismatch repair Mutation Microsatellite instability MSH2 MLH1 MSH6 PMS2 Lynch syndrome Exonuclease 


  1. 1.
    Sieber OM, Lipton L, Crabtree M, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med. 2003;348(9):791–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Jascur T, Boland CR. Structure and function of the components of the human DNA mismatch repair system. Int J Cancer. 2006;119(9):2030–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Palombo F, Gallinari P, Iaccarino I, et al. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science. 1995;268(5219):1912–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Chang DK, Ricciardiello L, Goel A, Chang CL, Boland CR. Steady-state regulation of the human DNA mismatch repair system. J Biol Chem. 2000;275(37):29178.PubMedGoogle Scholar
  5. 5.
    Gradia S, Subramanian D, Wilson T, et al. hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell. 1999;3(2):255–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Gradia S, Acharya S, Fishel R. The role of mismatched nucleotides in activating the hMSH2-hMSH6 molecular switch. J Biol Chem. 2000;275(6):3922–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Sixma TK. DNA mismatch repair: MutS structures bound to mismatches. Curr Opin Struct Biol. 2001;11(1):47–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74:681–710.PubMedCrossRefGoogle Scholar
  9. 9.
    Acharya S, Foster PL, Brooks P, Fishel R. The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol Cell. 2003;12(1):233–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260(5109):816–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.PubMedGoogle Scholar
  12. 12.
    Umar A, Boland CR, Terdiman JP, et al. Revised bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Karran P. Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis. 2001;22(12):1931–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363(6429):558–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Peltomaki P, Aaltonen LA, Sistonen P, et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science. 1993;260(5109):810–2.PubMedCrossRefGoogle Scholar
  16. 16.
    Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260(5109):812–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993;75(5):1027–38.PubMedCrossRefGoogle Scholar
  18. 18.
    Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993;75(6):1215–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368(6468):258–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994;263(5153):1625–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Nicolaides NC, Papadopoulos N, Liu B, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature. 1994;371(6492):75–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Miyaki M, Konishi M, Tanaka K, et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet. 1997;17(3):271–2.PubMedCrossRefGoogle Scholar
  23. 23.
    Kolodner RD, Tytell JD, Schmeits JL, et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res. 1999;59(20):5068–74.PubMedGoogle Scholar
  24. 24.
    Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57(5):808–11.PubMedGoogle Scholar
  25. 25.
    Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998;95(12):6870–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Boland CR. Evolution of the nomenclature for the hereditary colorectal cancer syndromes. Fam Cancer. 2005;4(3):211–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Boland CR, Koi M, Chang DK, Carethers JM. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch Syndrome: from bench to bedside. Fam Cancer. 2008;7(1):41–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Barnetson RA, Tenesa A, Farrington SM, et al. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med. 2006;354(26):2751–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Hendriks YM, Wagner A, Morreau H, et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology. 2004;127(1):17–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Papadopoulos N, Nicolaides NC, Liu B, et al. Mutations of GTBP in genetically unstable cells. Science. 1995;268(5219):1915–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Chadwick RB, Meek JE, Prior TW, Peltomaki P, de la Chapelle A. Polymorphisms in a pseudogene highly homologous to PMS2. Hum Mutat. 2000;16(6):530.PubMedCrossRefGoogle Scholar
  33. 33.
    Truninger K, Menigatti M, Luz J, et al. Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology. 2005;128(5):1160–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Hendriks YM, Jagmohan-Changur S, van der Klift HM, et al. Heterozygous mutations in PMS2 cause hereditary nonpolyposis colorectal carcinoma (Lynch syndrome). Gastroenterology. 2006;130(2):312–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Tomlinson IP, Ilyas M, Bodmer WF. Allele loss occurs frequently at hMLH1, but rarely at hMSH2, in sporadic colorectal cancers with microsatellite instability. Br J Cancer. 1996;74(10):1514–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaz A, Kim YH, Dzieciatkowski S, et al. Evidence for the role of aberrant DNA methylation in the pathogenesis of Lynch syndrome adenomas. Int J Cancer. 2007;120(9):1922–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Bandipalliam P. Syndrome of early onset colon cancers, hematologic malignancies & features of neurofibromatosis in HNPCC families with homozygous mismatch repair gene mutations. Fam Cancer. 2005;4(4):323–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Gallinger S, Aronson M, Shayan K, et al. Gastrointestinal cancers and neurofibromatosis type 1 features in children with a germline homozygous MLH1 mutation. Gastroenterology. 2004;126(2):576–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Hegde MR, Chong B, Blazo ME, et al. A homozygous mutation in MSH6 causes Turcot syndrome. Clin Cancer Res. 2005;11(13):4689–93.PubMedCrossRefGoogle Scholar
  40. 40.
    De VM, Hayward BE, Charlton R, et al. PMS2 mutations in childhood cancer. J Natl Cancer Inst. 2006;98(5):358–61.CrossRefGoogle Scholar
  41. 41.
    Duval A, Hamelin R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res. 2002;62(9):2447–54.PubMedGoogle Scholar
  42. 42.
    Perucho M. Microsatellite instability: the mutator that mutates the other mutator. Nat Med. 1996;2(6):630–1.PubMedCrossRefGoogle Scholar
  43. 43.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.PubMedCrossRefGoogle Scholar
  44. 44.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96(15):8681–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Smith KJ, Johnson KA, Bryan TM, et al. The APC gene product in normal and tumor cells. Proc Natl Acad Sci U S A. 1993;90(7):2846–50.PubMedCrossRefGoogle Scholar
  46. 46.
    Huang J, Papadopoulos N, McKinley AJ, et al. APC mutations in colorectal tumors with mismatch repair deficiency. Proc Natl Acad Sci U S A. 1996;93(17):9049–54.PubMedCrossRefGoogle Scholar
  47. 47.
    Arnold CN, Goel A, Niedzwiecki D, et al. APC promoter hypermethylation contributes to the loss of APC expression in colorectal cancers with allelic loss on 5q. Cancer Biol Ther. 2004;3(10):960–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Cunningham JM, Christensen ER, Tester DJ, et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 1998;58(15):3455–60.PubMedGoogle Scholar
  49. 49.
    Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang L, Cunningham JM, Winters JL, et al. BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res. 2003;63(17):5209–12.PubMedGoogle Scholar
  51. 51.
    McGivern A, Wynter CV, Whitehall VL, et al. Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer. 2004;3(2):101–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Lindor NM, Rabe K, Petersen GM, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293(16):1979–85.PubMedCrossRefGoogle Scholar
  53. 53.
    Valle L, Perea J, Carbonell P, et al. Clinicopathologic and pedigree differences in amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status. J Clin Oncol. 2007;25(7):781–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Brentnall TA, Crispin DA, Bronner MP, et al. Microsatellite instability in nonneoplastic mucosa from patients with chronic ulcerative colitis. Cancer Res. 1996;56(6):1237–40.PubMedGoogle Scholar
  55. 55.
    Lyda MH, Noffsinger A, Belli J, Fenoglio-Preiser CM. Microsatellite instability and K-ras mutations in patients with ulcerative colitis. Hum Pathol. 2000;31(6):665–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Heinen CD, Noffsinger AE, Belli J, et al. Regenerative lesions in ulcerative colitis are characterized by microsatellite mutation. Genes Chromosomes Cancer. 1997;19(3):170–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Chang CL, Marra G, Chauhan DP, et al. Oxidative stress inactivates the human DNA mismatch repair system. Am J Physiol Cell Physiol. 2002;283(1):C148–54.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee SH, Chang DK, Goel A, et al. Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol. 2003;170(4):2214–20.PubMedGoogle Scholar
  59. 59.
    Fleisher AS, Esteller M, Harpaz N, et al. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res. 2000;60(17):4864–8.PubMedGoogle Scholar
  60. 60.
    Wei K, Kucherlapati R, Edelmann W. Mouse models for human DNA mismatch-repair gene defects. Trends Mol Med. 2002;8(7):346–53.PubMedCrossRefGoogle Scholar
  61. 61.
    Fishel R. The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res. 2001;61(20):7369–74.PubMedGoogle Scholar
  62. 62.
    Boland CR, Fishel R. Lynch syndrome: form, function, proteins, and basketball. Gastroenterology. 2005;129(2):751–5.PubMedGoogle Scholar
  63. 63.
    Huang J, Kuismanen SA, Liu T, et al. MSH6 and MSH3 are rarely involved in genetic predisposition to nonpolypotic colon cancer. Cancer Res. 2001;61(4):1619–23.PubMedGoogle Scholar
  64. 64.
    Liu T, Yan H, Kuismanen S, et al. The role of hPMS1 and hPMS2 in predisposing to colorectal cancer. Cancer Res. 2001;61(21):7798–802.PubMedGoogle Scholar
  65. 65.
    Lipkin SM, Wang V, Jacoby R, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet. 2000;24(1):27–35.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu HX, Zhou XL, Liu T, et al. The role of hMLH3 in familial colorectal cancer. Cancer Res. 2003;63(8):1894–9.PubMedGoogle Scholar
  67. 67.
    Hienonen T, Laiho P, Salovaara R, et al. Little evidence for involvement of MLH3 in colorectal cancer predisposition. Int J Cancer. 2003;106(2):292–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Alam NA, Gorman P, Jaeger EE, et al. Germline deletions of EXO1 do not cause colorectal tumors and lesions which are null for EXO1 do not have microsatellite instability. Cancer Genet Cytogenet. 2003;147(2):121–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Thompson E, Meldrum CJ, Crooks R, et al. Hereditary non-polyposis colorectal cancer and the role of hPMS2 and hEXO1 mutations. Clin Genet. 2004;65(3):215–25.PubMedCrossRefGoogle Scholar
  70. 70.
    Chang DK, Metzgar D, Wills C, Boland CR. Microsatellites in the eukaryotic DNA mismatch repair genes as modulators of evolutionary mutation rate. Genome Res. 2001;11(7):1145–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Jung B, Doctolero RT, Tajima A, et al. Loss of activin receptor type 2 protein expression in microsatellite unstable colon cancers. Gastroenterology. 2004;126(3):654–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.GastroenterologyBaylor University Medical CenterDallasUSA

Personalised recommendations