Skip to main content

Molecular Genetics of Familial Adenomatous Polyposis

  • Chapter
  • First Online:
Hereditary Colorectal Cancer

Abstract

With the advances in molecular genetics, the function of the APC gene has been and still is being described. In this chapter, a description of the APC protein, function, its relation to tumorigenesis, Familial Adenomatous Polyposis and other colorectal cancer syndromes will be discussed. Finally animal models which have been proven invaluable in the discovery of the APC protein function, will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:59–170.

    Article  Google Scholar 

  2. Wheeler JM. Epigenetics, mismatch repair genes and colorectal cancer. Ann R Coll Surg Engl. 2005;87:15–20.

    Article  PubMed  CAS  Google Scholar 

  3. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

    Article  PubMed  CAS  Google Scholar 

  4. Luchtenborg M, Weijenberg MP, Roemen GM, de Bruine AP, van den Brandt PA, Lentjes MH, et al. APC mutations in sporadic colorectal carcinomas from the Netherlands Cohort Study. Carcinogenesis. 2004;25:1219–26.

    Article  PubMed  Google Scholar 

  5. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet. 2001;10:721–33.

    Article  PubMed  CAS  Google Scholar 

  6. Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, et al. A genetic linkage map of the human genome. Cell. 1987;51:319–37.

    Article  PubMed  CAS  Google Scholar 

  7. Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature. 1985;314:67–73.

    Article  PubMed  CAS  Google Scholar 

  8. Bodmer WF, Bailey CJ, Bodmer J, Bussey HJ, Ellis A, Gorman P, et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328:614–6.

    Article  PubMed  CAS  Google Scholar 

  9. Leppert M, Dobbs M, Scambler P, O’Connell P, Nakamura Y, Stauffer D, et al. The gene for familial polyposis coli maps to the long arm of chromosome 5. Science. 1987;238:1411–3.

    Article  PubMed  CAS  Google Scholar 

  10. Solomon E, Voss R, Hall V, Bodmer WF, Jass JR, Jeffreys AJ, et al. Chromosome 5 allele loss in human colorectal carcinomas. Nature. 1987;328:616–9.

    Article  PubMed  CAS  Google Scholar 

  11. Herrera L, Kakati S, Gibas L, Pietrzak E, Sandberg AA. Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet. 1986;25:473–6.

    Article  PubMed  CAS  Google Scholar 

  12. Lynch HT, Smyrk T, McGinn T, Lanspa S, Cavalieri J, Lynch J, et al. Attenuated familial adenomatous polyposis (AFAP). A phenotypically and genotypically distinctive variant of FAP. Cancer. 1995;76:2427–33.

    Article  PubMed  CAS  Google Scholar 

  13. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science. 1992;256:668–70.

    Article  PubMed  CAS  Google Scholar 

  14. Lambertz S, Ballhausen WG. Identification of an alternative 5′ untranslated region of the adenomatous polyposis coli gene. Hum Genet. 1993;90:650–2.

    Article  PubMed  CAS  Google Scholar 

  15. Cheng H. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells. Am J Anat. 1974;141:521–35.

    Article  PubMed  CAS  Google Scholar 

  16. Stappenbeck TS, Wong MH, Saam JR, Mysorekar IU, Gordon JI. Notes from some crypt watchers: regulation of renewal in the mouse intestinal epithelium. Curr Opin Cell Biol. 1998;10:702–9.

    Article  PubMed  CAS  Google Scholar 

  17. Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A. Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol. 2007;40:68–81.

    Article  PubMed  Google Scholar 

  18. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.

    Article  PubMed  CAS  Google Scholar 

  19. Brocardo M, Nathke IS, Henderson BR. Redefining the subcellular location and transport of APC: new insights using a panel of antibodies. EMBO Rep. 2005;6:184–90.

    Article  PubMed  CAS  Google Scholar 

  20. Liu J, Xing Y, Hinds TR, Zheng J, Xu W. The third 20 amino acid repeat is the tightest binding site of APC for beta-catenin. J Mol Biol. 2006;360:133–44.

    Article  PubMed  CAS  Google Scholar 

  21. Rubinfeld B, Albert I, Porfiri E, Munemitsu S, Polakis P. Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 1997;57:4624–30.

    PubMed  CAS  Google Scholar 

  22. Bienz M. APC: the plot thickens. Curr Opin Genet Dev. 1999;9:595–603.

    Article  PubMed  CAS  Google Scholar 

  23. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1999;280:596–9.

    Article  Google Scholar 

  24. Joslyn G, Richardson DS, White R, Alber T. Dimer formation by an N-terminal coiled coil in the APC protein. Proc Natl Acad Sci U S A. 1993;90:11109–13.

    Article  PubMed  CAS  Google Scholar 

  25. Kawasaki Y, Sato R, Akiyama T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat Cell Biol. 2003;5:211–5.

    Article  PubMed  CAS  Google Scholar 

  26. Mahmoud NN, Boolbol SK, Bilinski RT, Martucci C, Chadburn A, Bertagnolli MM, et al. Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. Cancer Res. 1997;57:5045–50.

    PubMed  CAS  Google Scholar 

  27. Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P, et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 1994;54:3676–81.

    PubMed  CAS  Google Scholar 

  28. Smith KJ, Levy DB, Maupin P, Pollard TD, Vogelstein B, Kinzler KW, et al. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res. 1994;54:3672–5.

    PubMed  CAS  Google Scholar 

  29. Kroboth K, Newton IP, Kita K, Dikovskaya D, Zumbrunn J, Waterman-Storer CM, et al. Lack of adenomatous polyposis coli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Mol Biol Cell. 2007;18:910–8.

    Article  PubMed  CAS  Google Scholar 

  30. Nathke I. Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nat Rev Cancer. 2006;6:967–74.

    Article  PubMed  Google Scholar 

  31. Laurent-Puig P, Beroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1998;26:269–70.

    Article  PubMed  CAS  Google Scholar 

  32. Crabtree MD, Tomlinson IP, Hodgson SV, Neale K, Phillips RK, Houlston RS, et al. Explaining variation in familial adenomatous polyposis: relationship between genotype and phenotype and evidence for modifier genes. Gut. 2002;51:420–3.

    Article  PubMed  CAS  Google Scholar 

  33. Samowitz WS, Thliveris A, Spirio LN, White R. Alternatively spliced adenomatous polyposis coli (APC) gene transcripts that delete exons mutated in attenuated APC. Cancer Res. 1995;55:3732–4.

    PubMed  CAS  Google Scholar 

  34. Nugent KP, Phillips RK, Hodgson SV, Cottrell S, Smith-Ravin J, Pack K, et al. Phenotypic expression in familial adenomatous polyposis: partial prediction by mutation analysis. Gut. 1994;35:1622–3.

    Article  PubMed  CAS  Google Scholar 

  35. Bertario L, Russo A, Sala P, Varesco L, Giarola M, Mondini P, et al. Multiple approach to the exploration of genotype–phenotype correlations in familial adenomatous polyposis. J Clin Oncol. 2003;21:1698–707.

    Article  PubMed  CAS  Google Scholar 

  36. Crabtree MD, Fletcher C, Churchman M, Hodgson SV, Neale K, Phillips RK, et al. Analysis of candidate modifier loci for the severity of colonic familial adenomatous polyposis, with evidence for the importance of the N-acetyl transferases. Gut. 2004;53:271–6.

    Article  PubMed  CAS  Google Scholar 

  37. Lamlum H, Ilyas M, Rowan A, Clark S, Johnson V, Bell J, et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s ‘two-hit’ hypothesis. Nat Med. 1999;5:1071–5.

    Article  PubMed  CAS  Google Scholar 

  38. Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Stors FJ, et al. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet. 2002;11:1549–60.

    Article  PubMed  CAS  Google Scholar 

  39. Crabtree M, Sieber OM, Lipton L, Hodgson SV, Lamlum H, Thomas HJ, et al. Refining the relation between ‘first hits’ and ‘second hits’ at the APC locus: the ‘loose fit’ model and evidence for differences in somatic mutation spectra among patients. Oncogene. 2003;22:4257–65.

    Article  PubMed  CAS  Google Scholar 

  40. Groves C, Lamlum H, Crabtree J, Williamson J, Taylor C, Bass S, et al. Mutation cluster region, association between germline and somatic mutations and genotype–phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathol. 2002;160:2055–61.

    Article  PubMed  CAS  Google Scholar 

  41. Schneikert J, Grohmann A, Behrens J. Truncated APC regulates the transcriptional activity of beta-catenin in a cell cycle dependent manner. Hum Mol Genet. 2007;16:199–209.

    Article  PubMed  CAS  Google Scholar 

  42. Laken SJ, Petersen GM, Gruber C, Oddoux H. Ostrer, Giardiello FM, et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet. 1997;17:79–83.

    Article  PubMed  CAS  Google Scholar 

  43. Woodage T, King SM, Wacholder S, Hartge P, Struewing JP, Peinado MA, et al. The APCI1307K allele and cancer risk in a community-based study of Ashkenazi Jews. Nat Genet. 1998;20:62–5.

    Article  PubMed  CAS  Google Scholar 

  44. Gryfe R, Di Nicola N, Gallinger S, Redston M. Somatic instability of the APC I1307K allele in colorectal neoplasia. Cancer Res. 1998;58:4040–3.

    PubMed  CAS  Google Scholar 

  45. Horii A, Nakatsuru S, Ichii S, Nagase H, Nakamura Y. Multiple forms of the APC gene transcripts and their tissue-specific expression. Hum Mol Genet. 1993;2:283–7.

    Article  PubMed  CAS  Google Scholar 

  46. Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60:4366–71.

    PubMed  CAS  Google Scholar 

  47. Arnold CN, Goel A, Niedzwiecki D, Dowell JM, Wasserman L, Compton C, et al. APC promoter hypermethylation contributes to the loss of APC expression in colorectal cancers with allelic loss on 5q. Cancer Biol Ther. 2004;3:960–4.

    Article  PubMed  CAS  Google Scholar 

  48. Bai AH, Tong JH, To KF, Chan MW, Man EP, Lo KW, et al. Promoter hypermethylation of tumor-related genes in the progression of colorectal neoplasia. Int J Cancer. 2004;112:846–53.

    Article  PubMed  CAS  Google Scholar 

  49. Chen J, Rocken C, Lofton-Day C, Schulz HU, Muller O, Kutsner N, et al. Molecular analysis of APC promoter methylation and protein expression in colorectal cancer metastasis. Carcinogenesis. 2005;26:37–43.

    Article  PubMed  Google Scholar 

  50. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C–>T:A mutations in colorectal tumors. Nat Genet. 2002;30:227–32.

    Article  PubMed  CAS  Google Scholar 

  51. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990;247:322–4.

    Article  PubMed  CAS  Google Scholar 

  52. Halberg RB, Katzung DS, Hoff PD, Moser Ar, Cole CE, Lubet RA, et al. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc Natl Acad Sci U S A. 2000;97:3461–6.

    Article  PubMed  CAS  Google Scholar 

  53. Caldwell CM, Green RA, Kaplan KB. APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. J Cell Biol. 2007;178:1109–20.

    Article  PubMed  CAS  Google Scholar 

  54. Moser AR, Dove WF, Roth KA, Gordon JI. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol. 1992;116:1517–26.

    Article  PubMed  CAS  Google Scholar 

  55. Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP, Russell R, et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology. 2003;124:762–77.

    Article  PubMed  Google Scholar 

  56. Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA, Luongo KA, et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell. 1993;75:631–9.

    Article  PubMed  CAS  Google Scholar 

  57. Gould K, Luongo AC, Moser AR, McNeley MK, Borenstein N, Shedlovsky A, Dove WF, Hong K, Dietrich WF, Lander ES. Genetic evaluation of candidate genes for the Mom1 modifier of intestinal neoplasia in mice. Genetics. 1996;144:1777–85.

    PubMed  CAS  Google Scholar 

  58. Gould KA, Dietrich WF, Borenstein N, Lander ES, Dove WF. Mom1 is a semi-dominant modifier of intestinal adenoma size and multiplicity in Min/+ mice. Genetics. 1996;144:1769–76.

    PubMed  CAS  Google Scholar 

  59. MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD, Buhberg AM, et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell. 1995;81:957–66.

    Article  PubMed  CAS  Google Scholar 

  60. Coremier RT, Bilger A, Lillich AG, Halberg RB, Hong KA, Gould KA, et al. The MomlAKR intestinal tumor resistance region consists of Pla2g2a and a locus distal to D4Mit64. Oncogence. 2000;19:3182-92

    Google Scholar 

  61. Tomlinson IP, Beck NE, Neale K, Bodmer WF. Variants at the secretory phospholipase A2 (PLA2G2A) locus: analysis of associations with familial adenomatous polyposis and sporadic colorectal tumours. Ann Hum Genet. 1996;60:369–76.

    Article  PubMed  CAS  Google Scholar 

  62. Silverman KA, Koratkar R, Siracusa LD, Buchberg AM. Identification of the modifier of Min 2 (Mom2) locus, a new mutation that influences Apc-induced intestinal neoplasia. Genome Res. 2002;12:88–97.

    Article  PubMed  CAS  Google Scholar 

  63. Baran AA, Silverman KA, Zeskand J, Koratkar R, Palmer A, McCullen K, et al. The modifier of Min 2 (Mom2) locus: embryonic lethality of a mutation in the Atp5a1 gene suggests a novel mechanism of polyp suppression. Genome Res. 2007;17:566–76.

    Article  PubMed  CAS  Google Scholar 

  64. Haines J, Johnson V, Pack K, Suraweera N, Slijepcevic P, Cabuy E, et al. Genetic basis of variation in adenoma multiplicity in ApcMin/+ Mom1S mice. Proc Natl Acad Sci U S A. 2005;102:2868–73.

    Article  PubMed  CAS  Google Scholar 

  65. Kwong LN, Shedlovsky A, Biehl BS, Clipson L, Pasch CA, Dove WF, et al. Identification of Mom7, a novel modifier of Apc(Min/+) on mouse chromosome 18. Genetics. 2007;176:1237–44.

    Article  PubMed  CAS  Google Scholar 

  66. Taketo MM. Wnt signaling and gastrointestinal tumorigenesis in mouse models. Oncogene. 2006;25:7522–30.

    Article  PubMed  CAS  Google Scholar 

  67. Colnot S, Niwa-Kawakita M, Hamard G, Godard C, Le Plenier S, Houbron C, et al. Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers. Lab Invest. 2004;84:1619–30.

    Article  PubMed  CAS  Google Scholar 

  68. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M, et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci U S A. 1995;92:4482–6.

    Article  PubMed  CAS  Google Scholar 

  69. Li Q, Ishikawa TO, Oshima M, Taketo MM. The threshold level of adenomatous polyposis coli protein for mouse intestinal tumorigenesis. Cancer Res. 2005;65:8622–7.

    Article  PubMed  CAS  Google Scholar 

  70. Fodde R, Edelmann W, Yang K, van Leeuwen C, Carlson C, Renault B, et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci U S A. 1994;91:8969–73.

    Article  PubMed  CAS  Google Scholar 

  71. Quesada CF, Kimata H, Mori M, Nishimura M, Tsuneyoshi T, Baba S, et al. Piroxicam and acarbose as chemopreventive agents for spontaneous intestinal adenomas in APC gene 1309 knockout mice. Jpn J Cancer Res. 1998;89:392–6.

    Article  PubMed  CAS  Google Scholar 

  72. Nagase H, Nakamura Y. Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat. 1993;2:425–34.

    Article  PubMed  CAS  Google Scholar 

  73. Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papdopoulou A, et al. APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proc Natl Acad Sci U S A. 2000;97:3352–7.

    Article  PubMed  CAS  Google Scholar 

  74. Andreu P, Colnot S, Godard C, Gad S, Chafey P, niwa-Kawakita M, et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development. 2005;132:1443–51.

    Article  PubMed  CAS  Google Scholar 

  75. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature. 2007;446:676–9.

    Article  PubMed  CAS  Google Scholar 

  76. Sansom OJ, Reed KR, van de Wetering M, Muncan V, Winton DJ, Clevers H, et al. Cyclin D1 is not an immediate target of beta-catenin following Apc loss in the intestine. J Biol Chem. 2005;280:28463–7.

    Article  PubMed  CAS  Google Scholar 

  77. Hulit J, Wang C, Li Z, Albanese C, Rao M, DiVisio D, et al. Cyclin D1 genetic heterozygosity regulates colonic epithelial cell differentiation and tumor number in ApcMin mice. Mol Cell Biol. 2004;24:7598–611.

    Article  PubMed  CAS  Google Scholar 

  78. Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, Warren G, et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell. 1995;82:309–19.

    Article  PubMed  CAS  Google Scholar 

  79. Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, et al. Meiotic pachytene arrest in MLH1-deficient mice. Cell. 1996;85:1125–34.

    Article  PubMed  CAS  Google Scholar 

  80. Edelmann W, Umar A, Yang K, Heyer J, Kucherlapati M, Lia M, et al. The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res. 2000;60:803–7.

    PubMed  CAS  Google Scholar 

  81. Reitmair AH, Schmits R, Ewel A, Bapat B, Redston M, Mitri A, et al. MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nat Genet. 1995;11:64–70.

    Article  PubMed  CAS  Google Scholar 

  82. Baker SM, Harris AC, Tsao JL, Flath TJ, Bronner CE, Gordon M, et al. Enhanced intestinal adenomatous polyp formation in Pms2-/-;Min mice. Cancer Res. 1998;58:1087–9.

    PubMed  CAS  Google Scholar 

  83. Kuraguchi M, Edelmann W, Yang K, Lipkin M, Kucherlapati R, et al. Tumor-associated Apc mutations in Mlh1−/− Apc1638N mice reveal a mutational signature of Mlh1 deficiency. Oncogene. 2000;19:5755–63.

    Article  PubMed  CAS  Google Scholar 

  84. Reitmair AH, Cai JC, Bjerknes M, Redston M, Cheng H, et al. MSH2 deficiency contributes to accelerated APC-mediated intestinal tumorigenesis. Cancer Res. 1996;56:2922–6.

    PubMed  CAS  Google Scholar 

  85. Edelmann W, Yang K, Kuraguchi M, Heyer J, Lia M, et al. Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice. Cancer Res. 1999;59:1301–7.

    PubMed  CAS  Google Scholar 

  86. Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci U S A. 2006;103:14122–7.

    Article  PubMed  CAS  Google Scholar 

  87. Oshima H, Oshima M, Kobayashi M, Tsutsumi M, Taketo MM. Morphological and molecular processes of polyp formation in Apc(delta716) knockout mice. Cancer Res. 1997;57:1644–9.

    PubMed  CAS  Google Scholar 

  88. Smits R, Kartheuser A, Jagmohan-Changur S, Leblanc V, Breukel C, et al. Loss of Apc and the entire chromosome 18 but absence of mutations at the Ras and Tp53 genes in intestinal tumors from Apc1638N, a mouse model for Apc-driven carcinogenesis. Carcinogenesis. 1997;18:321–7.

    Article  PubMed  CAS  Google Scholar 

  89. Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A, et al. EphB receptor activity suppresses colorectal cancer progression. Nature. 2005;435:1126–30.

    Article  PubMed  CAS  Google Scholar 

  90. Alberici P, Jagmohan-Changur S, De Pater E, Van Der Valk M, Smits R, et al. Smad4 haploinsufficiency in mouse models for intestinal cancer. Oncogene. 2006;25:1841–51.

    Article  PubMed  CAS  Google Scholar 

  91. Hamamoto T, Beppu H, Okada H, Kawabata M, Kitamura T, et al. Compound disruption of smad2 accelerates malignant progression of intestinal tumors in apc knockout mice. Cancer Res. 2002;62:5955–61.

    PubMed  CAS  Google Scholar 

  92. Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell. 1998;92:645–56.

    Article  PubMed  CAS  Google Scholar 

  93. Pretlow TP, Edelmann W, Kucherlapati R, Pretlow TG, Augenlicht LH. Spontaneous aberrant crypt foci in Apc1638N mice with a mutant Apc allele. Am J Pathol. 2003;163:1757–63.

    Article  PubMed  CAS  Google Scholar 

  94. Smits R, van der Houven van Oordt W, Luz A, Zurcher C, Jagmohan-Changur S, et al. Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology. 1998;114:275–83.

    Article  PubMed  CAS  Google Scholar 

  95. Shibata H, Toyama K, Shioya H, Ito M, Hirota M, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science. 1997;278:120–3.

    Article  PubMed  CAS  Google Scholar 

  96. Sasai H, Masaki M, Wakitani K. Suppression of polypogenesis in a new mouse strain with a truncated Apc(Delta474) by a novel COX-2 inhibitor, JTE-522. Carcinogenesis. 2000;21:953–8.

    Article  PubMed  CAS  Google Scholar 

  97. Luo G, Santoro IM, McDaniel LD, Nishijima I, Mills M, et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat Genet. 2000;26:424–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian P. Tomlinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carvajal-Carmona, L.G., Silver, A., Tomlinson, I.P. (2010). Molecular Genetics of Familial Adenomatous Polyposis. In: Rodriguez-Bigas, M., Cutait, R., Lynch, P., Tomlinson, I., Vasen, H. (eds) Hereditary Colorectal Cancer. M.D. Anderson Solid Tumor Oncology Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6603-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6603-2_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6602-5

  • Online ISBN: 978-1-4419-6603-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics