Short Distance Wireless Communications

  • Robert PuersEmail author
  • Jef Thoné
Part of the Integrated Circuits and Systems book series (ICIR)


Since the publication of the first biomedical swallowable telemetry device in 1957, an immense evolution has taken place in biomedical monitoring, stimulation and instrumentation, that would have been impossible without the use of wireless information transmission. The first section gives an overview of wireless methods for transmitting information to and from biomedical implants, followed by a practical introduction on analog and digital modulation methods, in a historical perspective. Next, methods are presented briefly for compressing the amount of transmitted information, as well as rendering the transmitted information more error-resistant. Being a design hurdle in many biomedical telemetry designs, the trade-off between antenna sizing and carrier selection is discussed. Finally, an overview is given of several published or commercial biomedical telemetry applications, with a focus on wireless transmission.


Cochlear Implant Voltage Control Oscillator Pulse Position Modulation Integrate Circuit Pulse Code Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alferness C.A., Programmable body stimulator, U.S. Patent 4 066 086, Sep 1976Google Scholar
  2. 2.
    Analog devices short range devices. [Online]. Available:
  3. 3.
    Ansem, RF cmos—pioneers from the early days. [Online]. Available:
  4. 4.
    Arabi K., Sawan M., (1995), A secure communication protocol for externally controlled implantable devices In: Engineering in medicine and biology society, 1995. IEEE 17th Ann Conf 2: 1661–1662 Sep 1995Google Scholar
  5. 5.
    Armstrong E., (1936), A method of reducing disturbances in radio signaling by a system of frequency modulation. Proc IRE 24(5):689–740, May 1936CrossRefMathSciNetGoogle Scholar
  6. 6.
    Puers R., Sansen W., (1985) A dedicated processing and control IC for pressure telemetry. In: Proceedings of IEEE CICC Portland, 1985, pp 144–146Google Scholar
  7. 7.
    Balanis C., (2005) Antenna Theory, 3rd edn. Wiley, Hoboken, New Jersey, 2005Google Scholar
  8. 8.
    Bang S., Park J.Y., Jeong S., Kim Y.H., Shim H.B., Kim T.S., Lee D.H., Song S.Y. (2009) First clinical trial of the miro capsule endoscope by using a novel transmission technology: electric-field propagation. Gastrointest Endosc, 69(2):253–259.Google Scholar
  9. 9.
    Barker P. (1966), Pressure sensor, U.S. Patent 3 240 207, Mar 1966Google Scholar
  10. 10.
    Bettesh I. (2006), Modulator and method for producing a modulated signal, U.S. Patent 2006/0 280 258, Dec 2006Google Scholar
  11. 11.
    Bluetooth compared to other technologies [Online]. Available:
  12. 12.
    Bluetooth SIG homepage. [Online]. Available:
  13. 13.
    Bolton E.K., Sayler G.S., Nivens D.E., Rochelle J.M., Ripp S., Simpson M.L. (2002), Integrated cmos photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit Sensors and Actuators B: Chemical, 85(1–2) 179–185Google Scholar
  14. 14.
    Bowers D.L. (1964), Controllable electric body tissue stimulators, U.S. Patent 3 311 111, Aug 1964Google Scholar
  15. 15.
    Bronzino J.D. (2000), The biomedical engineering handbook, 2nd edn. CRC Press, FloridaGoogle Scholar
  16. 16.
    McCaffrey C., Chevalerias O., Mathuna C.O., Twomey K. (2008), Swallowable-capsule technology, Perv Comput, 7(1):23–29, Jan 2008CrossRefGoogle Scholar
  17. 17.
    Callewaert L., Puers B., Sansen W., Jarvis J.C., Salmons S. (1991), Programmable implantable device for investigating the adaptive response of skeletal muscle to chronic electrical stimulation, Med Biol Eng Comput 29(5):548–553, Sep 1991CrossRefGoogle Scholar
  18. 18.
    Carson J.R. (1922), Notes on the theory of modulation. Proc. IRE 10(1):57–64, 1922CrossRefGoogle Scholar
  19. 19.
    Carta R., Tortora G., Thone J., Lenaerts B., Valdastri P., Menciassi A., Dario P., Puers R. (2009), Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection, Biosensors Bioelectronics, 25(4):845–851Google Scholar
  20. 20.
    Casadei F.W., Gerold M., Baldinger E. (1972), Overview of biomedical telemetry techniques. IEEE Trans Biomed Eng 19(5):334–341CrossRefGoogle Scholar
  21. 21.
    Chu L. (1948), Physical limitations in omnidirectional antennas. J Appl Phys 19(12):1163–1175CrossRefGoogle Scholar
  22. 22.
    Colpitts E. (1918), Oscillation generator, U.S. Patent 1 624 537, Feb 1918Google Scholar
  23. 23.
    Connel A., Rowlands E. (1960), Wireless telemetering from the digestive tract. Gut, 1:266–272CrossRefGoogle Scholar
  24. 24.
    Coosemans J., Puers R. (2005), An autonomous bladder pressure monitoring system. Sensors Actuators A: Physical 123–124:155–161Google Scholar
  25. 25.
    Coosemans J. (2008), Wireless and battery-less medical monitoring devices. Ph.D. dissertation, Katholieke Universiteit Leuven, Faculteit IngenieurswetenschappenGoogle Scholar
  26. 26.
    Coosemans J., Hermans B., Puers R. (2006), Integrating wireless ECG monitoring in textiles. Sensors Actuators A: Physical, 130–131:48–53CrossRefGoogle Scholar
  27. 27.
    Donaldson N.d.N., Perkins T. (1983), Analysis of resonant coupled coils in the radio frequency transcutaneous links. Med Biol Eng Comput 21:612–627CrossRefGoogle Scholar
  28. 28.
    ECC(04)02 non-specific SRD in band 433.050-434.790 Mhz [Online]. Available:
  29. 29.
    Van Gossum A. et al., Capsule endoscopy vs. colonoscopy for the detection of polyps and cancer. New Engl J Med 361(3):264–270, July 2009Google Scholar
  30. 30.
    Etsi en 301-839-1; electromagnetic compatibility and radio spectrum matters (erm); short range devices (srd); ultra low power active medical implants (ulp-ami) and peripherals (ulp-ami-p) operating in the frequency range 402 mhz to 405 mhz; part 1: Technical characteristics and test methods.” [Online]. Available: id=hex-Tn6e2xhjnkjo08%27vBGoogle Scholar
  31. 31.
    FCC rules and regulations. [Online]. Available: 07-10-08.pdf
  32. 32.
    Finkenzeller K. (2003), RFID Handbook, 2nd edn. Wiley, West Sussex, EnglandCrossRefGoogle Scholar
  33. 33.
    Forney G.D. (1973), The viterbi algorithm. Proc IEEE 61(3):268–278, March 1973CrossRefMathSciNetGoogle Scholar
  34. 34.
    Ghovanloo M., Najafi K. (2004), A wideband frequency-shift keying wireless link for inductively powered biomedical implants. Circuits and Systems I: Regular Papers. IEEE Trans 51(12):2374–2383, Dec 2004Google Scholar
  35. 35.
    Grevious J.J. (1998), Efficient high data rate telemetry format for implanted medical device. U.S. Patent 5 752 977, May, 1998Google Scholar
  36. 36.
    Guillory K., Misener A., Pungor A. (2004), Hybrid RF/IR transcutaneous telemetry for power and high-bandwidth data. In: Engineering in Medicine and Biology Society, IEMBS’04. 26th Annual Int Conf IEEE 2:4338–4340, Sept 2004Google Scholar
  37. 37.
    Halperin D., Heydt-Benjamin T., Ransford B., Clark S., Defend B., Morgan W., Fu K., Kohno T., Maisel W., Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In: Security and Privacy, 2008. SP 2008. IEEE Sympos, 129–142, May 2008Google Scholar
  38. 38.
    Van Ham J., Puers R. (2008), A power and data front-end IC for biomedical monitoring systems. Sensors Actuators A: Physical 147(2):641–648. FCCGoogle Scholar
  39. 39.
    Hambrecht F.T. (1963), A multichannel electroencephalographic telemetering system. Massachusetts Institute of Technology, RLE Technical Report 413Google Scholar
  40. 40.
    Hartley R. (1915), Oscillation generator. U.S. Patent 1 356 763, June, 1915Google Scholar
  41. 41.
    Haykin S. (2001), Communication systems, 4th edn. Wiley, New YorkGoogle Scholar
  42. 42.
    Heetderks W. (1988), RF powering of millimeter- and submillimeter-sized neural prosthetic implants., IEEE Trans Biomed Eng, 35(5):323–327, May 1988CrossRefGoogle Scholar
  43. 43.
    Huffman D.A. (1952), A method for the construction of minimum-redundancy codes. Proc. IRE. 40:1098–1101CrossRefGoogle Scholar
  44. 44.
    ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagneticfields (up to 300 Ghz). Health Phy 74(4):494–522, 1998Google Scholar
  45. 45.
    IEEE. IEEE std c95.1 - 2005 IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 khz to 300 ghz. IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), pp. 1–238, 2006Google Scholar
  46. 46.
    ERC recommendation 70-03 relating to the use of short range devices.
  47. 47.
    Istepanian R., Woodward B. (1997), Microcontroller-based underwater acoustic ECG telemetry system. IEEE Trans Inform Technol Biomed 1(2):150–154, June 1997CrossRefGoogle Scholar
  48. 48.
    Jaffe R., Rechtin E. (1955). Design and performance of phase-lock circuits capable of nearoptimum performance over a wide range of input signal and noise levels. IRE Trans Inform Theory 1(1):66–76, March 1955CrossRefGoogle Scholar
  49. 49.
    Jeutter D.C. (1983), Overview of biomedical telemetry techniques, Engineering in Medicine and Biology Magazine. 2(1):17–24, 1983CrossRefGoogle Scholar
  50. 50.
    Johnson C., Guy A. (1972), Nonionizing electromagnetic wave effects in biological materials and systems., Proc IEEE 60:692–720CrossRefGoogle Scholar
  51. 51.
    Jourand P., De Clercq H., Corthout R., Puers R. (2009), Textile integrated breathing and ECG monitoring system Procedia Chemistry 1(1):722–725, proceedings of the Eurosensors XXIII conferenceGoogle Scholar
  52. 52.
    Judy J.W., Markovi D. (2009), Guest editorial special section on wireless neural interfaces. IEEE Trans Neural Sys Rehabil Eng 17(4):309–311, Aug 2009CrossRefGoogle Scholar
  53. 53.
    Kim T.S. (2002), A method for communication between inside and outside of a transmission medium using the transmission medium as a communication line. U.S. Patent 7 307 544 B2, May 2002Google Scholar
  54. 54.
    Klein F., Davis D. (1976), A low power 4-channel physiological radio telemetry system for use in surgical patient monitoring. IEEE Trans Biomed Eng 23:478–481CrossRefGoogle Scholar
  55. 55.
    Ko W., Liang S., Fung C. (1977), Design of radio-frequency powered coils for implant instruments. Med Biol Eng Comput 15:634–640CrossRefGoogle Scholar
  56. 56.
    Lee T., Hajimiri A. (2000), Oscillator phase noise: a tutorial. IEEE J Solid-State Circuits 35(3):326–336, Mar 2000CrossRefGoogle Scholar
  57. 57.
    Lenaerts B., Puers R. (2007), An inductive power link for a wireless endoscope. Biosens Bioelectron 22(7):1390–1395.Google Scholar
  58. 58.
    Liew H.C., Chan E. (1993), Biotelemetry of green turtles (chelonia mydas) in pulau redang, Malaysia, during the internesting period. Proc 12th Int Sympos Biotel. 157–163Google Scholar
  59. 59.
    Lin W.C., Pillay S.K. (1974), A micropower pulsewidth-modulation-pulse-position modulation two-channel telemetry system for biomedical applications. IEEE Trans Biomed Eng 21(4):273–280CrossRefGoogle Scholar
  60. 60.
    Loeb G., Zamin C., Schulman J., Troyk P. (1991), Injectable microstimulator for functional electrical stimulation, Med Biol Eng Comput 29:13–19CrossRefGoogle Scholar
  61. 61.
    Lopez A. (2006), Fundamental limitations of small antennas: validation of Wheeler’s formulas. Antennas Propagat Mag. IEEE 48(4):28–36, Aug 2006CrossRefGoogle Scholar
  62. 62.
    Mackay S.R. (1998), Bio-medical telemetry: sensing and transmitting biological information from animals and man, 2nd edn. Wiley, New yorkGoogle Scholar
  63. 63.
    Mackay R., Jackobson B. (1957), Endoradiosonde Nature 179:1239–1240, June 1957CrossRefGoogle Scholar
  64. 64.
    Marin D., Troosters M., Martinez I., Valderrama E., Aguilo J. (1999), New developments for high performance implantable stimulators: first 3 Mbps up to 4.46 Mbps demodulator chip through a wireless transcutaneous link. In: Microelectronics for neural, fuzzy and bio-inspired systems. Proc Seventh Int Conf MicroNeuro ’99, pp 120–126Google Scholar
  65. 65.
    Maxim wireless and RF product page. [Online]. Available:
  66. 66.
    Medical devices radiocommunications service. [Online]. Available: home&id=medical implantGoogle Scholar
  67. 67.
    Melexis product page. [Online]. Available:
  68. 68.
    Micrel qwikradio range. [Online]. Available:
  69. 69.
    Miron B.D., Small antenna design, 1st edn. Elsevier, Oxford, UKGoogle Scholar
  70. 70.
    Mueller J., Nagle H. (1996), Feasibility of inductive powering of miniature lowpower biotelemetry for use with microfabricated biomedical sensors. Proc 13th Int Sympos Biotelemetry 371–377Google Scholar
  71. 71.
    Nagumo J. (1960), Telemetering system for physiological measurements. U. S. Patent 3 229–684, Dec 1960Google Scholar
  72. 72.
    Nardin M., Ziaie B., Arx V.J., Coghlan A., Dokmeci M., Najafi K. (1996), An inductively powered microstimulator for functional neuromuscular stimulation. Proc 13th Int Sympos Biotelemet 99–104Google Scholar
  73. 73.
    Ohta J., Kagawa K., Tokuda T., Nunoshita M. (2005), Retinal prosthesis device based on pulse frequency-modulation vision chip. ISCAS 2005. IEEE Int Sympos Circuits Sys 3:2923–2926, May 2005CrossRefGoogle Scholar
  74. 74.
    Oliver B., Pierce J., Shannon C. (1948), The philosophy of PCM Proc IRE 36(11):1324–1331CrossRefGoogle Scholar
  75. 75.
    Olsson R.H.I., Wise K. (2005), A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid-State Circuits 40(12):2796–2804, Dec 2005CrossRefGoogle Scholar
  76. 76.
    Pitsillides K., Symons J., Longhurst J. (1992), Biotelemetry of cardiovascular hemodynamic measurements in miniswine IEEE Trans Biomed Eng 39:982–986CrossRefGoogle Scholar
  77. 77.
    Puers R., Catrysse M., Vandevoorde G., Collier J.R., Louridas E., Burny F., Donkerwolcke M., Moulart F. (2000), A telemetry system for the detection of hip prosthesis loosening by vibration analysis. Sensors Actuators A: Physic,85(1–3):42–47.Google Scholar
  78. 78.
    Rizk M., Obeid I., Callender H.S., Wolf D.P. (2007), A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system. J Neural Eng 4(3):309.Google Scholar
  79. 79.
    Robrock R., Ko W. (1967), A six channel physiological telemetry system. IEEE Trans Biomed Eng 14(1):40–46CrossRefGoogle Scholar
  80. 80.
    Schuder J., Stephenson H., Townsend J. (1961), High-level electromagnetic energy transfer through a closed chest wall. IRE Int Conv Record 9:119–126Google Scholar
  81. 81.
    Schuylenbergh K., Peeters E., Puers R., Sansen W., Neetens A. (1991), An implantable telemetric tonometer for direct intraocular pressure measurements. Abstracts 1st Eur Conf Biomed Eng 194–195Google Scholar
  82. 82.
    Schuylenbergh K.V., Puers R. (2009), Inductive Powering, 1st edn. Springer, DordrechtGoogle Scholar
  83. 83.
    Sedra S.A., Smith C.K. (1998), Microelectronic Circuits, 4th edn. Oxford University PressGoogle Scholar
  84. 84.
    Shannon C.E. (1949), Communication in the presence of noise. Proc IRE 37(1):10–21CrossRefMathSciNetGoogle Scholar
  85. 85.
    Simpson L.M., Sayler S.G., Patterson G., Nivens E.D., Bolton K.E., Rochelle M.J., Arnott C.J., Applegate M.B., Ripp S., Guillorn A.M. (2001), An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit. Sensors Actuators B: Chemic, 72(2):134–140Google Scholar
  86. 86.
    Skutt R., Fell B.R., Kertzer R. (1970), A multichannel telemetry system for use in exercise physiology. IEEE Trans Biomed Eng 17(4):40–46CrossRefGoogle Scholar
  87. 87.
    Slater A., Bellet A., Kilpatrick G.D. (1969), Instrumentation for telemetering the electrocardiogram from scuba divers. IEEE Trans Biomed Eng BME-16(2):148–151, April 1969CrossRefGoogle Scholar
  88. 88.
    Smith G. (1972), Radiation efficiency of electrically small multiturn loop antennas Antenna Propagat, IEEE Trans 20(5):656–657, Sep 1972Google Scholar
  89. 89.
    Sodagar A., Amiri P. (2009), Capacitive coupling for power and data telemetry to implantable biomedical microsystems. NER ’09. 4th Int IEEE/EMBS Conf Neural Eng, 411–414, May 2009Google Scholar
  90. 90.
    Song S.J., Cho N., Yoo H.-J. (2007), A 0.2-mw 2-Mbps digital transceiver based on wideband signaling for human body communications. IEEE J Solid-State Circuits. 42(9):2021–2033, Sept 2007CrossRefGoogle Scholar
  91. 91.
    Song Y.-K., Patterson W., Bull C., Borton D., Li Y., Nurmikko A., Simeral J. (2007), A brain implantable microsystem with hybrid RF/IR telemetry for advanced neuroengineering applications. Engineering in Medicine and Biology Society. EMBS 2007. 29th Ann Int Conf IEEE 445–448, Aug 2007Google Scholar
  92. 92.
    Sweeney P. (2002), Error control coding: from theory to practice, 1st edn. Wiley, West Sussex, EnglandGoogle Scholar
  93. 93.
    Terman F.E. (1943), Radio Eng Handbook, 1st edn. McGraw-Hill, New YorkGoogle Scholar
  94. 94.
    Terry J. (1973), Implantable cardiac pacer having adjustable operating parameters. U.S. Patent 3 805 796, Jan 1973Google Scholar
  95. 95.
    Low power wireless RF Texas Instruments. [Online]. Available: Scholar
  96. 96.
    Thoné J., Puers R. (2009), Implement a simple digital-serial NRZ data-recovery algorithm in an FPGA. Electron Des. News 42–43, June 2009Google Scholar
  97. 97.
    Thoné J., Radiom S., Turgis D., Carta R., Gielen G., Puers R. (2009), Design of a 2Mbps FSK near-field transmitter for wireless capsule endoscopy. Sensors Actuators A: Physical, 156(1):43–48CrossRefGoogle Scholar
  98. 98.
    ISM-band and short range device regulatory compliance overview.[Online]. Available:
  99. 99.
    Tjensvold M.J. (2007), Comparison of the IEEE 802.11, 802.15.1, 802.15.4 and 802.15.6 wireless standards. Sep 2007. [Online]. Available: Scholar
  100. 100.
    Turcza P., Zieliski T., Duplaga M. (2008), Hardware implementation aspects of new low complexity image coding algorithm for wireless capsule endoscopy. Proc Comput Sci ICCS 2008, 476–485Google Scholar
  101. 101.
    Turgis D., Puers R. (2005), Image compression in video radio transmission for capsule endoscopy. Sensors Actuators A: Physical 123–124:129–136Google Scholar
  102. 102.
    Van Ham J., Reynders Frederix P., Puers R. (2007), An autonomous implantable distraction nail controlled by an inductive power and data link. Actuators and Microsystems TRANSDUCERS 2007. Int Conf Solid-State Sensors 427–430, June 2007Google Scholar
  103. 103.
    Viterbi A. (1967), Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inform Theory 13(2):260–269, Apr 1967zbMATHCrossRefGoogle Scholar
  104. 104.
    Sansen W., Puers R., Govaerts R. (1984), Design and realisation of an ultra-miniature hybrid for a pressure telemetry capsule. In: Proceedings of International Conference on Microelectronics Tokyo pp. 406–409Google Scholar
  105. 105.
    Wang G., Liu W., Sivaprakasam W., Zhou M., Weiland J., Humayun M. (2005), A wireless phase shift keying transmitter with q-independent phase transition time. Engineering in Medicine and Biology Society. IEEE-EMBS 2005. 27th Ann Int Conf 5238–5241, Jan. 2005Google Scholar
  106. 106.
    Wang G., Liu W., Sivaprakasam W., Zhou M., Weiland J., Humayun M. A dual band wireless power and data telemetry for retinal prosthesis. Engineering in Medicine and Biology Society, 2006. EMBS ’06. 28th Ann Int Conf IEEE, Sept 2006 pp 4392–4395Google Scholar
  107. 107.
    Watson B.W., Ross B., Kay A.W. (1962), Telemetering from within the body using a pressuresensitive radio pill. Gut 3:181–186CrossRefGoogle Scholar
  108. 108.
    Wheeler H. Simple inductance formulas for radio coils. Proc IRE 16(10):1398–1400, Oct 1928CrossRefGoogle Scholar
  109. 109.
    Wheeler H. (1947) Fundamental limitations of small antennas. Proc IRE 35(12):1479–1484Google Scholar
  110. 110.
    Wimedia Alliance homepage. [Online]. Available:
  111. 111.
    Wolcott G.T., Hines H.A. (1989), Ultrasonic biotelemetry of muscle activity from free-ranging marine animals: a new method for studying foraging by blue crabs (callinectes sapidus) Biol Bull 176:50–56, Feb 1989CrossRefGoogle Scholar
  112. 112.
    Wouters P., De Cooman M., Vergote S., Puers R. (1993), Simultaneous telemetric monitoring of body temperature and activity of herding mammals. Proc 12th Int Sympos Biotelemetry pp 128–136Google Scholar
  113. 113.
    Wyborny B.P. (1994), Telemetry system for an implantable medical device. U.S. Patent 5 354 319, Oct 1994Google Scholar
  114. 114.
    Yaghjian A., Best S. Impedance, bandwidth, and q of antennas. IEEE Trans Antennas Propag 53(4):1298–1324, April 2005CrossRefGoogle Scholar
  115. 115.
    Yin M., Ghovanloo M. (2009), Using pulse width modulation for wireless transmission of neural signals in multichannel neural recording systems. IEEE Trans Neural Sys Rehabil Eng 17(4):354–363, Aug 2009CrossRefGoogle Scholar
  116. 116.
    RF integrated circuits for medical applications (Zarlink). [Online]. Available: Scholar
  117. 117.
    Zl0250 product webpage. [Online]. Available: ZL70250.htm
  118. 118.
    Zl7010 product webpage. [Online]. Available: ZL70101.htm
  119. 119.
    Zeng F-G., Rebscher S., Harrison W., Sun X., Feng H. (2008), Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 1:115–142CrossRefGoogle Scholar
  120. 120.
    Zigbee Alliance homepage [Online]. Available:

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations