Skip to main content

Low Power Bio-Medical DSP

  • Chapter
  • First Online:
  • 2655 Accesses

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

Many micro-watt power processors have been proposed to improve the processing efficiency for the possible application to Bio Signal Processing [1–5]. Figure 6.1 denotes the energy of recent low power (energy) processors, indicating the trend of the processor’s energy efficiency. The first group is the general purposed processor [1–3, 5]. They have developed for low power operation. Yet, they still require the long operating time, which is the important factor of the energy consumption. Thus, the application specific processor rather than general purpose processor has been developed [4]. Even though it consumes more power than the general purposed processors, the operating time can be reduced remarkably due to the dedicated hardware and instructions. Thus, if the application is clearly defined such as the Bio Signal Processing, it becomes very attractive to improve the energy efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhai B, Nazhandali L, Olson J, Reeves A, Minuth M, Helfand R, Pant S, Blaauw D, Austin T (2006) A 2.60pJ/Inst subthreshold sensor processor for optimal energy efficiency. IEEE Proceedings of Symposium of VLSI, Jun 2006

    Google Scholar 

  2. De Nil M, Yseboodt L, Bouwens F, Hulzink J, Berekovic M, Huisken J, van Meerbergen J (2007) Ultra low power asip design for wireless sensor node. IEEE Proceedings of ICECS

    Google Scholar 

  3. Seok M, Hanson S, Lin Y-S, Foo Z, Kim D, Lee Y, Liu N, Sylvester D, Blaauw D (2008) The Phoenix processor: A 30 pW platform for sensor applications. IEEE Proceedings of Symposium of VLSI, Jun 2008

    Google Scholar 

  4. Ickes N, Finchelstien D, Chandrakasan AP (2008) A 10-pJ/instruction, 4-MIPS Micropower DSP for sensor application. IEEE Proceedings of ASSCC, Nov 2008

    Google Scholar 

  5. Jocke SC,. Bolus1 JF, Wooters SN, Jurik AD, Weaver AC, Blalock TN, Calhoun BH (2009) A 2.6-μW Sub-threshold mixed-signal ECG SoC. IEEE Proceedings of VLSI, Jun 2009

    Google Scholar 

  6. de Chazal P, Palreddy S, Tompkins WJ (2004) Automatic classification of hearbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51(7):1196–1206, Jul 2004

    Article  Google Scholar 

  7. Kim BS, Yoo SK, Lee MH (2006) Wavelet-based low-delay ecg compression algorithm for continuous ECG transmission. IEEE Trans Infor Tech Biomed 10(1), Jan 2006

    Google Scholar 

  8. Istepanian RSH, Petrosian AA (2000) Optimal Zonal Wavelet-based ECG Data Compression for mobile telecardiology system. IEEE Trans Infor Tech Biomed 4(3), Sep 2000

    Google Scholar 

  9. Kim H, Kim Y, Yoo HJ (2008) A low cost quadratic level ecg compression algorithm and its hardware optimization for body sensor network system. IEEE Proceedings of EMBC, Aug 2008

    Google Scholar 

  10. Arzeno NM, Deng Z-De, Poon C-S (2008) Analysis of first-derivative based qrs detection algorithms. IEEE Trans Biomed Eng 55(2):478–484, Feb 2008

    Article  Google Scholar 

  11. Zigel Y, Cohen A, Katz A (2000) The Weighted diagnostic distortion (WDD) Measure for ECG signal compression. IEEE Trans Biomed Eng 47(11), Nov 2000

    Google Scholar 

  12. Welch TA (1984) A technique for high-performance data compression Computer 17(6):8–19, Jun 1984

    Google Scholar 

  13. Health informatics. Standard communication protocol. Computer-assisted electrocardiography. British-Adopted European Standard BS EN 1064:2005

    Google Scholar 

  14. Dipersio DA, Barr RC (1985) Evaluation of the fan method of adaptvie sampling on human electrocardiograms. Med Bio Eng Comp 401–410, Sep1985

    Google Scholar 

  15. Abenstein JP, Tompkins WJ (1982) A new data reduction algorithm for real time ECG analysis. IEEE Trans Biomed Eng 29(1):43–48, Apr1982

    Article  Google Scholar 

  16. Cox JR, Nolle FM, Fozzard HA, Oliver GC (1968) AZTEC, A preprocessing program for real time ecg rhythm analysis. IEEE Trans Biomed Eng 15(4):128–129, Apr 1968

    Article  Google Scholar 

  17. Mueller WC (1978) Arrhythmia detection program for an ambulatory ecg monitor. Biomed Sci Instrument 14:81–85

    Google Scholar 

  18. Hilton ML (1997) Wavelet and wavelet packet compression of electrocardiograms. IEEE Trans Biomed Eng 44(5) May1997

    Google Scholar 

  19. Djohan A, et al. (1995) ECG compression using discrete symmetric wavelet transform. IEEE Proceedings of EMBC

    Google Scholar 

  20. Tai S-C, Sun C-C, Yan W-C (2005) A 2-D ECG Compression method based on wavelet transform and modified SPIHT. IEEE Trans Biomed Eng 52(6):999–1008, Jun 2005

    Article  Google Scholar 

  21. Manikandan MS, et al. (2005) ECG signal compression using discrete sinc interpolation. IEEE Proceedings of ICISIP, Dec 2005

    Google Scholar 

  22. Manikandan MS, Dandapat S (2005) ECG signal compression using discrete sinc interpolation. IEEE Proceedings of ICISIP, Dec 2005

    Google Scholar 

  23. Olmos S, MillAn M, Garcia J, Laguna P (1996) ECG data compression with the Karhunen-Loeve transform. Comput Cardiol 8–11:253–256, Sep 1996

    Google Scholar 

  24. http://www.physionet.org/physiobank/database/mitdb/

  25. Fira CM, Goras L (2008) An ECG signals compression method and its validation using NNs. IEEE Trans Biomed Eng 55(4):1319–1326, Apr 2008

    Article  Google Scholar 

  26. Reddy DC (2005) Biomedical signal processing—principles and techniques. McGraw Hill. ISBN 007-124774-2

    Google Scholar 

  27. Nazhandali L, et al. (2005) A second-generation sensor network processor with application-driven memory optimization and out-of-order execution. IEEE Proceedings of CASES, pp. 249–256, Sep 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyejung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, H., Yoo, HJ. (2011). Low Power Bio-Medical DSP. In: Yoo, HJ., van Hoof, C. (eds) Bio-Medical CMOS ICs. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6597-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6597-4_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6596-7

  • Online ISBN: 978-1-4419-6597-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics