Readout Circuits

  • R. Firat YaziciogluEmail author
Part of the Integrated Circuits and Systems book series (ICIR)


Biopotential signals are routinely monitored in current medical practice for diagnostics of several different disorders. Commonly, patients are connected to a bulky and mains powered instrument, which reduces their mobility and creates discomfort. This limits the acquisition time, prevents the continuous monitoring of patients, and affects the diagnostics of the illness. Therefore, there is a growing demand for low-power and small-size biopotential acquisition systems [1–5].


Input Impedance Local Field Potential Flicker Noise Polarization Voltage Readout Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Park S, and Jayaraman S (2003) Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag. 22(3):41–48, May–June 2003CrossRefGoogle Scholar
  2. 2.
    Gyselinckx B., van Hoof C., Ryckaert J., Yazicioglu R., Fiorini P., Leonov V (2005) Human++: autonomous wireless sensors for body area networks. In: custom integrated circuits conference. Proceedings of the IEEE 2005, 18–21 Sept. 2005. pp 13–19Google Scholar
  3. 3.
    Mundt C., Montgomery K., Udoh U., Barker V, Thonier G, Tellier A., Ricks R, Darling R, Cagle Y., Cabrol N., Ruoss S., Swain J, Hines J, Kovacs G (2005) A multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Trans vol. 9(3):382–391, Sept. 2005Google Scholar
  4. 4.
    Paradiso R, Giannicola L, Taccini N (2005) A wearable health care system based on knitted integrated sensors. IEEE Trans Inform Technol Biomed.3:337–344CrossRefGoogle Scholar
  5. 5.
    Gyselinckx B, Vullers R, Hoof C, Ryckaert J, Yazicioglu R Fiorini P, Leonov V (2006) Human++: Emerging technology for body area networks., In: Very large scale integration, 2006 IFIP International Conference, Oct. 2006, pp 175–180Google Scholar
  6. 6.
    Webster JG (1992) Medical instrumentation: application and design, 2nd edn. Boston (Mass.), Houghton MifflinGoogle Scholar
  7. 7.
    Huhta JC, Webster JG (1973) 60-Hz interference in electrocardiography. IEEE Trans Bio-Med Eng BME-20(2):91–101, March 1973CrossRefGoogle Scholar
  8. 8.
    Van Rijn AC, Kuiper AP, Dankers TE, Grimbergen CA (1996) Low-cost active electrodes improves the resolution in biopotential recordings. IEEE EMBCGoogle Scholar
  9. 9.
    Metting van Rijn AC, Peper A, Grimbergen (1990) High-quality recording of bioelectric events; part 1, interference reduction, theory, and practice, Med Biol Eng Comput 28:389–397Google Scholar
  10. 10.
    Winter BB, Webster JG (1983) Driven-right-leg circuit design. IEEE Trans Bio-Med Eng. BME-30(1):62–66, Jan. 1983CrossRefGoogle Scholar
  11. 11.
    Razavi B (2001) Desing of analog CMOS integrated circuits. McGraw-Hill Science/Engineering Math; 1 Edition (August 15, 2000)Google Scholar
  12. 12.
    Steyaert M, Sansen W (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes., IEEE J Solid-State Circuit 22(6):1163–1168, Dec 1987CrossRefGoogle Scholar
  13. 13.
    Burr-Brown (1997) INA122: single supply, micropower instrumentation amplifier, online, Oct. 1997Google Scholar
  14. 14.
    Burke M, Gleeson D (2000) A micropower dry-electrode ECG preamplifier, IEEE T, Bio-Med Eng. 47(2):155–162, Feb. 2000CrossRefGoogle Scholar
  15. 15.
    Pallas-Areny R, Webster J (1993) AC instrumentation amplifier for bioimpedance measurements, IEEE Trans Bio-Med Eng. 40(8):830–833, Aug. 1993CrossRefGoogle Scholar
  16. 16.
    Spinelli E, Martinez N, Mayosky M, Pallas-Areny R (2004) A novel fully differential biopotential amplifier with DC suppression. IEEE Trans Bio-Med Eng. 51(8):1444–1448, Aug 2004CrossRefGoogle Scholar
  17. 17.
    Spinelli E, Pallas-Areny R, Mayosky M 2003 AC-coupled front-end for biopotential measurements. IEEE Trans Bio-Med Eng. 50(3):391–395, March 2003CrossRefGoogle Scholar
  18. 18.
    Huijsing JH (2001) Operational amplifiers: theory and design. Kluwer Academic, Springer; 1 edition (December 2000)Google Scholar
  19. 19.
    Mancini R Don’t fall in love with one type of instrumentation amp available online:
  20. 20.
    Van Peteghem P, Verbauwhede I, Sansen W (1985) Micropower high performance SC building block for integrated low-level signal processing. IEEE J Solid-State Circuit 20(4):837–844, Aug 1985CrossRefGoogle Scholar
  21. 21.
    Degrauwe M, Vittoz E, Verbauwhede I (1985) A micropower CMOS instrumentation amplifier. EEE J Solid-State Circuits 20(3):805-807, Jun 1985CrossRefGoogle Scholar
  22. 22.
    Enz C, Temes G (1996) Circuit techniques for reducing the effects of opamp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 84(11):1584–1614, Nov 1996CrossRefGoogle Scholar
  23. 23.
    Harrison R, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965, June 2003CrossRefGoogle Scholar
  24. 24.
    Olsson R, Gulari A, Wise K (2003) A fully-integrated bandpass amplifier for extracellular neural recording. In: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference, 20–22 March 2003, pp. 165–168Google Scholar
  25. 25.
    Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System. IEEE J Solid-State Circuits 42(1):123–133, Jan. 2007CrossRefGoogle Scholar
  26. 26.
    Wu H, Xu PA (2006) 1 V 2.3 μW Biomedical Signal Acquisition IC. In: Proceedings of the 2006 IEEE International Solid-State Circuit Conference, Feb. 5–9, pp. 119–128, 2006Google Scholar
  27. 27.
    Zou X, Xu X, Yao L, Lian Y (2009) A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip. IEEE J Solid-State Circuits 44(4):1067–1077, April 2009.CrossRefGoogle Scholar
  28. 28.
    Verma N, Shoeb A, Guttag J, and Chandrakasan A (2009) A Micro-power EEG Acquisition SoC with Integrated Seizure Detection Processor for Continuous Patient Monitoring. 2009 Symposium on VLSI Circuits, June 2009.Google Scholar
  29. 29.
    Menolfi C, Huang Q (1999) A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset. IEEE J Solid State Circuits 34(3):415–420, March 1999CrossRefGoogle Scholar
  30. 30.
    Enz C, Vittoz E, Krummenacher F (1987) A CMOS chopper amplifier. IEEE J Solid-State Circuits 22(3):335–342, June 1987CrossRefGoogle Scholar
  31. 31.
    Menolfi C, Huang Q (1997) A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE J Solid State Circuits 32(7)968–976, July 1997.CrossRefGoogle Scholar
  32. 32.
    Menolfi C (2000) Low noise CMOS chopper instrumentation amplifiers for thermoelectric microsensors. Ph.D. dissertation, Swiss Federal Institute of Technology, ETHGoogle Scholar
  33. 33.
    Menolfi C and Huang Q (1997), A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE J Solid State Circuits 32(7)968–976, July 1997CrossRefGoogle Scholar
  34. 34.
    Eatock F 1973 A monolithic instrumentation amplifier with low input current. Solid-state circuits conference. Digest of technical papers. 1973 IEEE International, XVI: 148–149, Feb 1973Google Scholar
  35. 35.
    Yazicioglu RF, Merken P, Puers B, Van Hoof C (2008) A 200 μW Eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J Solid State Circuits 43(12):3025–3038, Dec 2008CrossRefGoogle Scholar
  36. 36.
    Fotowat H, Harrison RR, and Gabbiani F (2009) Measuring neural correlates of insect escape behaviors using a miniature telemetry system. In: Proceedings of the 35th annual northeast bioengineering conference, Cambridge, MAGoogle Scholar
  37. 37.
    Denison T, Consoer K, Kelly A, Hachenburg A, Santa W (2007) 2.2 μW 97 nV/√Hz, chopper stabilized instrumentation amplifier for EEG detection in chronic implants. In: Solid-state circuits, 2007 IEEE International Conference Digest of Technical Papers, 2007, pp. 162–163Google Scholar
  38. 38.
    Yazicioglu RF, Merken P, Puers R, Van Hoof C (2007) A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J Solid-State Circuits 42(5):1100–1110, May 2007CrossRefGoogle Scholar
  39. 39.
    Toumazou C, Lidgey FJ, and Makris CA (1989) Current-mode instrumentation amplifier, IEE Colloquium on Current Mode Analogue Circuits, pp. 8/1-8/5, FebGoogle Scholar
  40. 40.
    Krabbe H (1971) A high-performance monolithic instrumentation amplifier. In: Solid-State Circuits Conference. Digest of Technical Papers. 1971 IEEE International XIV:186–187, Feb 1971Google Scholar
  41. 41.
    Martins R, Selberherr S, Vaz F (1998) A CMOS IC for portable EEG acquisition systems. IEEE T Instrum Meas 47(5):1191–1196, Oct 1998CrossRefGoogle Scholar
  42. 42.
    Jochum T, Denison T, Wolf P (2009) Integrated circuit amplifiers for multi-electrode intracortical recording. J Neural Eng 6Google Scholar
  43. 43.
    Chae M, Liu W, Yang Z, Chen T, Kim J, Sivaprakasam M, and Yuce MR (2008), A 128-channel 6 mW Wireless Neural Recording IC with On-the-fly Spike Sorting and UWB Transmitter. IEEE Int Solid-State Circuits Conf (ISSCC’08), Feb 2008Google Scholar
  44. 44.
    A.-T. Avestruz, Santa W, Carlson D, Jensen R, Stanslaski S, Helfenstine A, and Denison T (2008) A 5 μW/Channel spectral analysis IC for chronic bidirectional brain–machine interfaces. IEEE J Solid-State Circuits 43(12)3006–3024, Dec 2008CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Interuniversity Microelectronics Center (IMEC)LeuvenBelgium

Personalised recommendations