Biomedical Electrodes For Biopotential Monitoring and Electrostimulation

  • Eric McAdamsEmail author
Part of the Integrated Circuits and Systems book series (ICIR)


Biomedical electrodes are used in various forms in a wide range of biomedical applications including

(i) the detection of bio-electric events such as the electrocardiogram (E.C.G.)

(ii) the application of therapeutic impulses to the body e.g. cardiac pacing and defibrillation and transcutaneous electrical nerve stimulation (T.E.N.S.)

(iii) the application of electrical potentials in order to facilitate the transdermal delivery of ionized molecules for local and systemic therapeutic effect (iontophoresis) and

(iv) the a.c. impedance characterization of body tissues.


Stratum Corneum Charge Transfer Resistance Contact Impedance Electrode Design Skin Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adams G (1785) An essay on electricity, Logographic Press, LondonGoogle Scholar
  2. 2.
    Admundson DC, McArthur W, Mosharrafa M (1979) The porous endocardial electrode. PACE 2:40–50Google Scholar
  3. 3.
    Aguiló J (2002) Microprobe multisensor for graft viability monitoring during organ preservation and transplantation. 2nd annual international IEEE-EMB special topic conference on microtechnologies in medicine & biology. Madison, WI, Feb 2002, pp 15–20Google Scholar
  4. 4.
    Aldini G (1803) In: An account of late improvements in Galvanism. Nilkes and Taylor, LondonGoogle Scholar
  5. 5.
    Almasi JJ, Schmitt OH (1970) Systemic and random variations of ECG electrode system impedance. Ann NY Acad Sci 170:509–519Google Scholar
  6. 6.
    Almasi JJ, Hart MW, Schmitt OH, Watanabe Y (1972) Bioelectrode voltage offset time profiles and their impact on ECG measurement standards. Can. Med. Biol. Eng. Conf., 4th, Winnipeg, MB, Canada September 6Google Scholar
  7. 7.
    Axelgaard J (2004) Reverse current controlling electrode US patent 2004158305Google Scholar
  8. 8.
    Axisa F, Schmitt PM, Gehin C, Delhomme G, Mc Adams E, Dittmar A (September 2005) Flexible technologies and smart clothing for citizen medicine, home healthcare and disease prevention. IEEE Trans Info Tech Biomed 9(3):325–336Google Scholar
  9. 9.
    Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York, NYGoogle Scholar
  10. 10.
    Barker LF (1910) Electrocardiography and phonocardiography: a collective review. Bull Johns Hopkins Hosp 21:358–359Google Scholar
  11. 11.
    Barnes AR, Pardee HEB, White PD et al (1938) Standardization of precordial leads. Am Heart J 15:235–239Google Scholar
  12. 12.
    Barron SL (1950) The development of the electrocardiograph in Great Britain. Br Med J 1: 720–25Google Scholar
  13. 13.
    Bell GH, Knox AC, Small AJ (1939) Electrocardiography electrolytes. Br Heart J 1:229–236Google Scholar
  14. 14.
    Bergveld P (1976) Med Biol Eng Comput 14:479–482Google Scholar
  15. 15.
    Brown L Langer R (1988) Transdermal derlivery of drugs. Ann Rev Med 39:221–229Google Scholar
  16. 16.
    Brummer SB, Turner MJ (1975) Electrical stimulation of the nervous system: the principle of safe charge injection with noble metal electrodes. Bioelectrochem Bioenerget 2:13–25Google Scholar
  17. 17.
    Brummer SB, Robblee LS, Hambrecht FT (1983) Criteria for selecting electrodes for electrical stimulation: theoretical and practical considerations. Ann NY Acad Sci 405:159–171Google Scholar
  18. 18.
    Burch GE, DePasquale NP (1990) A history of electrocardiography with a new introduction by Joel D. Howell, 2nd edn. Jeremy Norman, San Francisco, CAGoogle Scholar
  19. 19.
    Carim HM (1988) Bioelectrodes. In: Webster, J.G. (ed) Encyclopaedia of medical devices and instrumentation. Wiley, New York, NY, pp 195–226Google Scholar
  20. 20.
    Carim HM, Hawkinson RW (1982) EKG electrode electrolyte-skin AC impedance studies. In: Proceedings of 4th Annual Conference of the IEEE Engineering in Medicine and Biology Society pp 503–504Google Scholar
  21. 21.
    Caruso PM, Pearce JA, DeWitt DP (1979) Temperature and current density distributions at electrosurgical dispersive electrode sites. In: Proc. 7th N. Engl. Bioeng. Conf., Troy, NY, March 22–23, 373–376Google Scholar
  22. 22.
    Chardack WM, Gage AA, Greatbatch W (1961) Correction of complete heart block by a self-contained and subcutaneously implanted pacemaker. J Thorac Cardiovasc Surg 42:418Google Scholar
  23. 23.
    Cheney M, Isaacson D, Newell JC (1999) Electrical impedance tomography. SIAM Rev 41:85–101zbMATHMathSciNetGoogle Scholar
  24. 24.
    Chien YW (1982) Transdermal controlled-release drug administration. In: Swarbrick, J. (ed) Novel drug delivery systems. Marcel Dekker Inc., New York, NY, p 149Google Scholar
  25. 25.
    Chien, Y W.(1987) Development of transdermal drug delivery systems. Drug Dev Ind Pharm 13(4&5):589–651MathSciNetGoogle Scholar
  26. 26.
    Cole KS, Curtis HJ (1938) Transverse electric impedance of squid giant axon. J Gen Physiol 22:3764Google Scholar
  27. 27.
    Crenner F, Angel F, Ringwald C (1989) Ag/AgCl electrode assembly for thin smooth muscle electromyography. Med Biol Eng Comput 27:346–356Google Scholar
  28. 28.
    De Levie R (1965) The influence of surface roughness of solid electrodes on electrochemical measurements. Electrochim Acta 10:113–130Google Scholar
  29. 29.
    de Levie R (1989) On the impedance of electrodes with rough interfaces, J Electroanal Chem 261:1–9Google Scholar
  30. 30.
    Dempsey GJ, McAdams ET, McLaughlin J, Anderson JMcC (1992) NIBEC cardiac mapping harness. 14th Annual International Conference IEEE Eng. In Med. and Biol. Soc., Paris, France, pp 2702–2703, November 1, 1992Google Scholar
  31. 31.
    De Talhouet H, Webster JG (1996) The origin of skin-stretch-caused motion artefacts under electrodes. Physiol Meas 17:81–93Google Scholar
  32. 32.
    Drake KL, Wise KD, J Farraye, Anderson DJ, BeMent SL (1988) Performance of planar multisite microprodes in recording extracellular single-unit intracortical activity. IEEE Trans Biomed Eng 35:719–732Google Scholar
  33. 33.
    Duchenne GBA (1855) In: De l’électrisation localisée et de son application à la physiologie, à la pathologie et à la thérapeutique, ParisGoogle Scholar
  34. 34.
    Duchenne GBA (1876) In : Mécanisme de la physionomie humaine. J. B. Baillière et fils, ParisGoogle Scholar
  35. 35.
    Dymond AM (1976) IEEE Trans BME 23:274–280Google Scholar
  36. 36.
    Edelberg R (1971) Electrical properties of the skin. In: Elden HR (ed) A treatise of the skin. Wiley, New York, NYGoogle Scholar
  37. 37.
    Ellenbogen KA, Wood MA (2002) Cardiac pacing and ICDs. Blackwell Science Malden, Massachusetts: Blackwell Publishing Company, Inc., 2002Google Scholar
  38. 38.
    Ferrari RK (1996) X-ray transmissive transcutaneous stimulating electrode. US Patent 5,571,165Google Scholar
  39. 39.
    Fischler H, Schwan HP (1981) Polarisation impedance of pacemaker electrodes: in vitro simulating practical operation. Med Biol Eng Comput 19:579–588Google Scholar
  40. 40.
    Fricke H (1932) The theory of electrolytic polarization. Phil.Mag 7:310–318Google Scholar
  41. 41.
    Gatzke RD (1974) The electrode: a measurement systems viewpoint, In Miller HA, Harrison DC (eds) Biomedical electrode technology. Academic Press, New York, NYGoogle Scholar
  42. 42.
    Geddes LA, Baker LE, Moore AG (1969) Optimum electrolytic chloriding of silver electrodes. Med Biol Eng 7: 49–56Google Scholar
  43. 43.
    Geddes LA (1972) Electrodes and the measurement of bioelectric events Wiley, New York, NYGoogle Scholar
  44. 44.
    Geddes LA, Baker LE (1989) Principles of applied biomedical instrumentation, 3rd edn. Wiley, New York, NYGoogle Scholar
  45. 45.
    Geddes LA (1995) Historical perspectives 2: the electrocardiograph In: Bronzino JD (ed) The biomedical engineering handbook. Boca Raton: CRC Press, pp 788–798Google Scholar
  46. 46.
    Greatbatch W, Holmes CF (1991, September) History of implantable devices. IEEE Eng Med Biol 38–49Google Scholar
  47. 47.
    Grimnes S (1983) Dielectric breakdown of human skin in vivo. Med Biol Eng Comput 21:379–381Google Scholar
  48. 48.
    Heath R (1989) Tin-stannous chloride electrode element. United States Patent 4852585.Google Scholar
  49. 49.
    Hollander JI (1983) ECG-electrodes. Report No. 83.336, MFI-TNO, Utrecht, The NetherlandsGoogle Scholar
  50. 50.
    Hyland M. McLaughlin J, Zhou DM, McAdams E, (1996) Surface modification of thin film gold electrodes for improved in vivo performance. Analyst (121):705–709Google Scholar
  51. 51.
    Hyman AS (1932) Resuscitation of the stopped heart by intracardial therapy. Arch Intern Med 50:283Google Scholar
  52. 52.
    Hymes AC (1981) Monitoring and stimulating electrode. US Patent 4,274,420, June 23, 1981Google Scholar
  53. 53.
    Janz GJ, Ives DJG (1968) Silver-silver chloride electrodes. Ann NY Acad Sci 148:210–221Google Scholar
  54. 54.
    Jaron D, Briller SA, Schwan HP, Geselowitz DB (1969) Nonlinearity of cardiac pacemaker electrodes. IEE Trans Vol BME 16:132–138Google Scholar
  55. 55.
    Jasper HH, Carmichael L (1935) Electrical potentials from the intact human. Science 81:51–53Google Scholar
  56. 56.
    Jossinet J, McAdams ET (1991) Skin impedance. Innova Tech Biol Med 12(1):21–31Google Scholar
  57. 57.
    Khan A, Greatbatch W (1974) Physiologic electrodes. In:CD Ray (ed) Medical engineering, Year Book Medical Publishers, Chicago, ILGoogle Scholar
  58. 58.
    Kim Y, Fahy JB, Tupper B (1986) Optimal electrode designs for electrosurgery, defibrillation, and external cardiac pacing. IEEE Trans Biomed Eng 33:845–853Google Scholar
  59. 59.
    Kim Y, Schimpf PH (March 1996) Electrical behavior of defibrillation and pacing electrodes. Proceed IEEE 84(3):446–456Google Scholar
  60. 60.
    Kingma YJ, Lenhart J, Bowes KL, Chambers MM, Durdle NG (1983) Improved Ag/AgCl pressure electrodes. Med Biol Eng Comput 21:351–357Google Scholar
  61. 61.
    Klingman AM (1984) Skin permeability: Dermatologic aspects of transdermal drug delivery. Am Heart J 108(1):200–207MathSciNetGoogle Scholar
  62. 62.
    Krasteva V, Papazov S (2002) Estimation of current density distribution under electrodes for external defibrillation. BioMedical Engineering Online, 1:7, URL
  63. 63.
    Krug K, Marecki NM (1983) Porous and other medical and pressure sensitive adhesives. Adhes Age 26(12):19–23Google Scholar
  64. 64.
    Lagergren H, Johansson L (1963) Intracardiac stimulation for complete heart block. Acta Chir Scand 125:562–566Google Scholar
  65. 65.
    Lagergren H, Edhag O, Wahlberg I (1976) A low threshold non-dislocating endocardial electrode. J Thorac Cardiovasc Surg 72:259Google Scholar
  66. 66.
    Lawler JC, Davis MJ, Griffith EC (1960) Electrical characteristics of the skin. J Invest Dermatol 1960 May; 34: 301–308Google Scholar
  67. 67.
    Lenarz T, Battmer R-D, Goldring JE, Neuburger J, Kuzma J, Reuter G (2000) New electrode concepts (Modiolus-Hugging Electrodes). Adv Otorhinolaryngol Basel, Karger, 57:347–353Google Scholar
  68. 68.
    Lewes D (1965) Multipoint electrocardiography without skin preparation. Lancet 2:17 –18Google Scholar
  69. 69.
    Lewin G, Myers GH, Parsonnet V, Zucker IR (1967) A non-polarizing electrode for physiological stimulation. Trans Am Soc Artif Intern Organs 13:345Google Scholar
  70. 70.
    Licht S (1959) History of electrotherapy. In Licht S (ed) Therapeutic electricity and ultraviolet radiation. Elizabeth Licht Pub, New Haven, CT, pp 1–69Google Scholar
  71. 71.
    Lilly JC, Hughes JR, Alvord EC, Galkin TW (1955) Brief, noninjurious electric waveform for stimulation of the brain. Science 121:468–469Google Scholar
  72. 72.
    Linquette-Mailley SC, Hyland M, Mailley P, McLaughlin J, McAdams ET (2002) Electrochemical and structural characterisation of electrodeposited iridium oxide thin film electrodes applied to neurostimulating electrical signal. Mater Sci Eng 21:167–175Google Scholar
  73. 73.
    Low J, Reed A (1994) Electrotherapy explained: principles and practice. Butterworth –Heinmann Ltd, Oxford, EnglandGoogle Scholar
  74. 74.
    Lymberis A (2004) Research and development of smart wearable health applications: the challenge ahead. In: Lymberis A, de Rossi D (eds)wearable e-health systems for personalised health management, studies in health technology and informatics 108, IOS PressGoogle Scholar
  75. 75.
    Manley AG (1976) Medical electrode. US Patent 3977392Google Scholar
  76. 76.
    Mannheimer JS, Lampe GN (1987) Clinical transcutaneous electrical nerve stimulation, F.A. Davis, Philadelphia, PAGoogle Scholar
  77. 77.
    Maritan A, Toigo F (1990) On skewed arc plots of impedance of electrodes with an irreversible electrode process. Electrochim Acta 35:141–145Google Scholar
  78. 78.
    Mastrototaro JJ, Massoud HZ, Pilkington TC, Ideker RE (1992) Rigid and flexible thin-film multielectrode assays for transmural cardiac recording. IEEE Trans Biomed Eng 39:271–279Google Scholar
  79. 79.
    Maynard EM (2001) Visual Prostheses. Annu Rev Biomed Eng 3:145–68Google Scholar
  80. 80.
    McAdams ET (1989) Effect of surface topography on the electrode-electrolyte interface impedance. Part 1: The high frequency, small signal interface impedance. Surf Topogr 2:107–122Google Scholar
  81. 81.
    McAdams ET, (1989b) Effect of surface topography on the electrode-electrolyte interface impedance, part 2: the low frequency (F<1 Hz), small signal interface impedance. Surf Topogr 2:223–232Google Scholar
  82. 82.
    McAdams ET (1990) Surface biomedical electrode technology. Int Med Device Diagn Ind, Sep./Oct. 1990, pp. 44–48Google Scholar
  83. 83.
    McAdams ET, Jossinet J (1990) Hydrogel electrodes in bio-signal recording In: Proceedings of the 12th annual international conference of the IEEE, engineering in medicine and biology society, Philadelphia, PA, pp 1490–1491Google Scholar
  84. 84.
    McAdams ET, Jossinet J, (1991) DC nonlinearity of the solid electrode-electrolyte interface impedance. Inn Tech Biol Med 12:329–343.Google Scholar
  85. 85.
    McAdams ET, Jossinet J (1991b) The importance of electrode-skin impedance in high resolution electrocardiography. Automedica 13:187–208Google Scholar
  86. 86.
    McAdams ET, Jossinet J, (1992) A physical interpretation of Schwan’s limit current of linearity. Ann Biomed Eng 20:307–319.Google Scholar
  87. 87.
    McAdams ET, Henry P, Anderson JMcC, Jossinet J (1992) Optimal electrolytic chloriding of silver ink electrodes for use in electrical impedance tomography. Clin Phys Physiol Mes 13(1):19–23Google Scholar
  88. 88.
    McAdams ET, Andrews P (2003) Biomedical electrodes and biomedical electrodes for electrostimulation. US Patent 2003134545Google Scholar
  89. 89.
    McAdams ET, Jossinet J (1994) A Physical Interpretation of Schwan’s Limit Voltage of Linearity. Med Biol Eng Comput March:126–130Google Scholar
  90. 90.
    McAdams ET, McLaughlin JA, Anderson JMcC (1994a) Multi-Electrode Systems for Electrical Impedance Tomography. Physiol Meas 15:A101–A106Google Scholar
  91. 91.
    McAdams ET, McLaughlin JA, Brown BN, McArdle F (1994b) The NIBEC EIT harness chapter 8 In: Holder D (ed) Clinical and physiological applications of electrical impedance tomography. UCL Press, London, 1993, pp 85–92Google Scholar
  92. 92.
    McAdams ET, Lackermeier A, Jossinet J (1994c) AC impedance of the hydrogel-skin interface. In: 16th annual international conference on IEEE engineering in medicine and biology society, Baltimore, MD, USA, pp 870–871Google Scholar
  93. 93.
    McAdams ET, Lackermeier A, Woolfson ET, Moss GP, McCafferty DF (1995) In vivo ac impedance monitoring of percutaneous drug delivery. In: Proceedings of 9th international conference on bioimpedance, Heidelberg, Germany, pp 344–347Google Scholar
  94. 94.
    McAdams ET, Jossinet J, Lackermeier A, Risacher F (1996) “Factors affecting the electrode-gel-skin interface impedance in electrical impedance tomography.” Med Biol Eng Comput 34 (6):397–408Google Scholar
  95. 95.
    McLaughlin J, McAdams ET, Anderson JMcC (1994) “Novel dry electrode ECG sensor system”. In: 16th annual international conference on IEEE engineering in medicine and biology society, Baltimore, MD, USA, p 804, Nov 1994Google Scholar
  96. 96.
    Mittal T (2005) Pacemakers – a journey through the years. Ind J Thorac Cardiovasc Surg 21:236–249Google Scholar
  97. 97.
    Mond H, Stokes KB (1991) The electrode–tissue interface: the revolutionary role of steroid elution. PACE 15:95–107Google Scholar
  98. 98.
    Mond HG, Stokes KB (1996) The steroid-eluting electrode: a 10-year experience. Pacing Clin Electrophysiol Jul 19(7):1016–20Google Scholar
  99. 99.
    Mortimer JT, Bhadra N (2004) “Peripheral nerve and muscle stimulation” In: Horch KW, Dhillon GS (eds) Neuroprosthetics: theory and practice (Series on bioengineering & biomedical engineering), vol 2. World Scientific, Singapore, pp 638–744Google Scholar
  100. 100.
    Myers GH, Parsonnet V (1969) “Pacemaker electrodes.” In: Engineering in the heart and blood. Wiley, New York, NYGoogle Scholar
  101. 101.
    Nessler N, Reischer W, Salchner M (2003) Electronic skin replaces volunteer experiments. Meas Sci Rev 3(2):71–74Google Scholar
  102. 102.
    Netherly SG, Carim HM (1998) Biomedical electrode with Lossy dielectric properties. US patent 5836942, 1998Google Scholar
  103. 103.
    Oh SY, Leung L, Bommannan D, Guy RH, Potts RO (1993) Effect of current, ionic strength and temperature on the electrical properties of skin. J Controlled Release 27:115–125Google Scholar
  104. 104.
    Olson WH, Schmincke DR, Henley BL (1979) Time and frequency dependence of disposable ECG electrode-skin impedance. Med Instrum 13:269–72Google Scholar
  105. 105.
    Onaral B, Schwan HP (1982) “Linear and non-linear properties of platinum electrode polarization: part 1. frequency dependence at very low frequencies.” Med Biol Eng Comput 20:299–306Google Scholar
  106. 106.
    Parsonnet V, Zucker IR, Asa MM (1962) Preliminary investigation of the development of a permanent implantable pacemaker utilizing an intracardiac dipolar electrode. Clin Res 10:391Google Scholar
  107. 107.
    Pearce JA (1980) “The thermal performance of electrosurgical dispersive electrodes.” PhD Thesis, Purdue University, West Lafayette, INGoogle Scholar
  108. 108.
    Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–60Google Scholar
  109. 109.
    Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad. Sci 90:10504–20508Google Scholar
  110. 110.
    Prohaska OJ, Olcaytug F, Pfundner P, Dragaun H (1986, Feb) “Thin film multiple electrode probes: possibilities and limitations”. IEEE Trans Buiomed Eng 33:223–229Google Scholar
  111. 111.
    Reilly JP (1992) Electrical Stimulation and Electropathology. Cambridge University Press, CambridgeGoogle Scholar
  112. 112.
    Rieger R, Taylor J, Comi E, Donaldson N, Russold M, Mahony CMO, McLaughlin JA, McAdams E, Demosthenous A, Jarvis JC (2004) “Experimental determination of compound A-P direction and propagation velocity from multi-electrode nerve cuffs.” Med Biol Eng Comput Phys 26:531–534Google Scholar
  113. 113.
    Robinson AJ, Snyder-Mackler L (1995) Clinical electrophysiology: electrotherapy and electrophysiologic testing. Williams and Wilkins, New York, NYGoogle Scholar
  114. 114.
    Rosendal T (1945a) Further studies on the conducting properties of human skin to direct and alternating current. Acta Physiol Scand 8:183–202Google Scholar
  115. 115.
    Rosendal T (1945b) Concluding studies on the conducting properties of human skin to alternating current. Acta Physiol Scan 9:39–49Google Scholar
  116. 116.
    Rosell J, Colominas J, Riu P, Pallas-Areny R, Webster JG (1988) Skin impedance from 1 Hz to 1 MHz. IEEE Trans Biomed Eng BME-35: 649–51Google Scholar
  117. 117.
    Rothman S (1956) Electrical behavior. In: Physiology and biochemistry of the skin. University of Chicago Press, Chicago, IL, pp 9–25Google Scholar
  118. 118.
    Rowbottom ME, Susskind C (1984) “Electricity and medicine: history of their interaction.” San Francisco Press, Berkeley, CAGoogle Scholar
  119. 119.
    Rutten WLC (2002) Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng 4:407–52Google Scholar
  120. 120.
    Salter DC (1980) A study of some electrical properties of normal and pathological skin in vivo. D.Phil. Thesis, University of OxfordGoogle Scholar
  121. 121.
    Sarlandière (1825) “Mémoires sur l’électropuncture considérée comme moyen nouveau de traiter efficacement la goutte, les rhumatismes et les affections nerveuses. Paris 1825Google Scholar
  122. 122.
    Schechter DC (1983) “Exploring the origins of electrical cardiac stimulation.” Medtronic, Minneapolis, MNGoogle Scholar
  123. 123.
    Schmitt OH, Almasi JJ (1970) Electrode impedance and voltage offset as they affect efficacy and accuracy of VCG and ECG measurements. In: Proceedings of X1th international vectorcardiography symposium, New York, NY, USA, pp 245–253Google Scholar
  124. 124.
    Schoenberg AG, Klingler DR, Baker CD, Worth NP, Booth HE, Lyon PC (1979) Final report: development of test methods for disposable ECG electrodes. UBTL Technical Report No. 1605–005, Salt Lake City, UT, 1979Google Scholar
  125. 125.
    Schwan HP (1966) “Alternating current electrode polarisation.” Biophysik 3:181–201Google Scholar
  126. 126.
    Schwan HP (1968) “Electrode polarization impedance and measurements in biological materials.” Ann NY Acad Sci 148:191–209Google Scholar
  127. 127.
    Searle A, Kirkup L (2000) A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol Meas 21:271–283Google Scholar
  128. 128.
    Simpson RW, Berberian JG, Schwan HP (1980) “Nonlinear AC and DC polarization of platinum electrodes.” IEE Trans BME-27:166–171Google Scholar
  129. 129.
    Singh S, Singh J (1993) “Transdermal drug delivery by passive diffusion and iontophoresis: a review”. Med Res Rev 13(5):569–621Google Scholar
  130. 130.
    Sluyters-Rechbach M, Sluyters JH (1970) “Sine wave methods in the study of electrode processes.” In: Bard AJ (ed) Electroanalytical chemistry, vol 4. Marcel Dekker, New York, NY, pp 1–128Google Scholar
  131. 131.
    Stankevich BA (1980, December) “4% of professional liability claims involve electromedicine equipment.” Mod Health Care 10(12):74–76Google Scholar
  132. 132.
    Stokes K (1990, June) “Implantable pacing lead technology.” IEEE Eng Med Biol 9(2): 43–49MathSciNetGoogle Scholar
  133. 133.
    Stokes K (1996, March) “Cardiac pacing electrodes.” Proc IEEE 84(3):457–467Google Scholar
  134. 134.
    Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27:487–507Google Scholar
  135. 135.
    Szeto AYJ (1988) ‘Pain relief from transcutaneous electrical nerve stimulation (TENS).’ In: Webster JG (ed) ‘Encyclopedia of medical devices and instrumentation.’ Wiley, New York, NY, 2203–2220Google Scholar
  136. 136.
    Tam HW, Webster JG (1977) Minimizing motion artifact by skin abrasion. IEEE Trans Biomed Eng BME-24:134–40Google Scholar
  137. 137.
    Timmis G (1990) “The electrobiology and engineering of pacemaker leads.” In: Saksena S, Goldschlager N (eds) Electrical therapy for cardiac arrhythmias. W.B. Saunders, LondonGoogle Scholar
  138. 138.
    Ungerleider HE (1939) “A new precordial electrode.” Am Heart J 18:94Google Scholar
  139. 139.
    Waller AD (1887) A demonstration on man of electromotive changes accompanying the heart’s beat. J Physiol 8:229–234Google Scholar
  140. 140.
    Waller AD (1889) On the electromotive changes connected with the beat of the mammalian heart, and of the human heart in particular. Phil Trans R Soc London Ser B 180:169–194Google Scholar
  141. 141.
    Waller AD (1888) Introductory address on the electromotive properties of the human heart. Br Med J 2:751–754Google Scholar
  142. 142.
    Webster JG (1998) Medical instrumentation: application and design. Wiley, New York, NYGoogle Scholar
  143. 143.
    Weiland JD, Liu W, Humayun MS (2005) Retinal prosthesis. Annu Rev Biomed Eng 7:361–401Google Scholar
  144. 144.
    Weinman J (1965) “Biphasic stimulation and electrical properties of metal electrodes.” J Appl Physiol 20:787–790Google Scholar
  145. 145.
    Welch W (1951) Self-retaining electrocardiographic electrode. JAMA 147:1042Google Scholar
  146. 146`.
    Wiley JD, Webster JG (1982) “Analysis and control of the current distribution under circular dispersive electrodes”. IEEE Trans Biomed Eng BME-29:381–385Google Scholar
  147. 147.
    Williams DF (1999) The Williams dictionary of biomaterials. ISBN 0-85323-921-5Google Scholar
  148. 148.
    Wolferth CC, Wood FC (1932) The electrocardiographic diagnosis of coronary occlusion by the use of chest leads. Am J Med Sci 183:30–35Google Scholar
  149. 149.
    Yamamoto T, Yamamoto Y (1976) Electrical properties of the epidermal stratum corneum. Med Biol Eng 14:151–158Google Scholar
  150. 150.
    Yamamoto T, Yamamoto Y (1977) ‘Analysis for the change of skin impedance.’ Med Biol Eng Comput 15:219–227Google Scholar
  151. 151.
    Yamamoto Y, Yamamoto T (1978) Dispersion and correlation of the parameters for skin impedance. Med Biol Eng Comput 16:592–594Google Scholar
  152. 152.
    Zinc R (1991) “Distortion and interference in the measurement of electrical signals from the skin (ECG, EMG, EEG).” Inno Tech Biol Med 12(special issue 1):46–59Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Biomedical Sensors GroupINSA (National Institute of Applied Science) of LyonVilleurbanne CedexFrance

Personalised recommendations