Cardiac Rhythm Management IC’s

  • Erno KlaassenEmail author
Part of the Integrated Circuits and Systems book series (ICIR)


Cardiac rhythm management devices can be grouped into two broad categories: pacemakers and implantable cardioverter defibrillators (ICD’s). These devices, over the last decades, have continued to grow in capability and complexity, and provide therapy for a wide range of cardiac rhythm disorders. The devices themselves are only one important part of the entire system, which includes device, leads, programmer, and the patient. This chapter will provide some background about the need for these devices, their function in the system, and details on their internal electrical design, focusing on the integrated circuits.


Implantable Cardioverter Defibrillator Charge Pump Battery Voltage Dual Chamber Pace Capture Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Elmqvist R, Senning A (1960) An implantable pacemaker for the heart. In: Smythe CN (ed) Medical Electronics, Proceedings of the Second International Conference on Medical Electronics, Paris, 1959, Tliffe and Sons, LondonGoogle Scholar
  2. 2.
    Geddes LA (1990) Historical highlights in cardiac pacing. IEEE Eng Med Biol 9:12–18CrossRefGoogle Scholar
  3. 3.
    Parsonnet V, Zucker IR, Asa MM (1962) Preliminary investigation of the development of a permanent implantable pacemaker using an intracardiac dipolar electrode. Clin Res, 10:391Google Scholar
  4. 4.
    Kenny T (2006) The nuts and bolts of ICD therapy. Blackwell, Malden MACrossRefGoogle Scholar
  5. 5.
    International Standards Organization (2000) Implants for surgery—cardiac pacemakers—Part 3: Low-profile connectors (IS-1) for implantable pacemakers ISO 5841–3:2000Google Scholar
  6. 6.
    Kenny T (2005) The nuts and bolts of cardiac pacing. Blackwell, Malden MACrossRefGoogle Scholar
  7. 7.
    Mallela VS, Ilankumaran V, Rao NS (2004) Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol J 4(4):201–212Google Scholar
  8. 8.
    Jeffrey K, Parsonnet V (1998) Cardiac pacing, 1960–1985: A quarter century of medical and industrial innovation. Circulation 97:1978–1991Google Scholar
  9. 9.
    Parsonnet V, et al. (1973) A permanent pacemaker capable of external non-invasive programming. Trans Am Soc Artif Intern Organs 19:224–228Google Scholar
  10. 10.
    Bernstein AD, Daubert JC, Fletcher RD, et al. (2000) The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate and multisite pacing. Pacing Clinic Electrophysiol 25:260–264CrossRefGoogle Scholar
  11. 11.
    Huffman FN, Migliore JJ, Robinson, WJ, Norman, JC (1974) Radioisotope powered cardiac pacemakers. IEEE Trans Nucl Sci NS21(1):707–713CrossRefGoogle Scholar
  12. 12.
    Greatbatch W, et al. (1971) The solid-state lithium battery: A new improved chemical power source for implantable cardiac pacemakers. IEEE Trans. Biomed Eng. 18:317–324CrossRefGoogle Scholar
  13. 13.
    Takeuchi ES, Quattrini PJ, Greatbatch W (1988) Lithium/silver vanadium oxide batteries for implantable defibrillators. Pacing Clinic Electrophysiol 11(11):2035–2039CrossRefGoogle Scholar
  14. 14.
    Bunch TJ, Hayes DL, Friendman PA, (2008) Clinically relevant basics of pacing and defibrillation. In: Hayes DL, Friedman PA (eds) Cardiac pacing, defibrillation and resynchronization, 2nd edn. Wiley-Blackwell, West Sussex U.KGoogle Scholar
  15. 15.
    Daliri M, Maymandi-Nejad M (2008) A 0.8 V 420 nW CMOS switched-opamp switched-capacitor pacemaker front-end with a new continuous-time CMFB. Int Conf Electron Circuits Syst, ICECS 2008, Aug 31–Sept 3, pp. 758–761Google Scholar
  16. 16.
    Silveira F, Flandre D (2004) Low power analog CMOS for cardiac pacemakers. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  17. 17.
    Gerosa A, Maniero A, Neviani A (2004) A fully integrated dual-channel log-domain programmable preamplifier and filter for an implantable cardiac pacemaker. IEEE Trans Circuits Syst 15(10):1916–1925Google Scholar
  18. 18.
    Wong LSY et al. (2004) A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J Solid-State Circuits 39(12):2446–2456CrossRefGoogle Scholar
  19. 19.
    Gerosa A, Neviani A (2005) A 1.8 μW sigma-delta modulator for 8-bit digitization of cardiac signals in implantable pacemakers operating down to 1.8 V. IEEE Trans Circuits Syst II:Express Briefs 52(2):71–76CrossRefGoogle Scholar
  20. 20.
    Ryan JG, Carroll KJ, Pless BD (1989) A four chip implantable defibrillator/pacemaker chipset. IEEE 1989 Custom Integrated Circuits ConferenceGoogle Scholar
  21. 21.
    Walden RH (1999) Analog-to-digital converter survey and analysis. IEEE J Selected Areas Commun 17(4):539–550CrossRefGoogle Scholar
  22. 22.
    Murmann B (2008) A/D converter trends: power dissipation, scaling and digitally assisted architectures. IEEE 2008 Custom Integrated Circuits Conf 105–112Google Scholar
  23. 23.
    Scott MD, Boser BE, Pister KSJ (2003) An ultralow-energy ADC for smart dust. IEEE J Solid-State Circuits 38(7):1123–1129CrossRefGoogle Scholar
  24. 24.
    Nys OJAP, Dijkstra E (1993) On configurable oversampled A/D converters. IEEE J Solid-State Circuits 28(7):736–742CrossRefGoogle Scholar
  25. 25.
    Gulati K, Lee HS (2001) A low-power reconfigurable analog-to-digital converter. IEEE J Solid State Circuits 36(12): 1900–1911CrossRefGoogle Scholar
  26. 26.
    Markus J, Silva J, Temes GC (2004) Theory and applications of incremental delta sigma converters. IEEE Trans Circuits Syst 51(4):678–690CrossRefGoogle Scholar
  27. 27.
    Swaroop P, Vasani AJ, Ghovanloo M (2006) A high-voltage output driver for implantable biomedical stimulators and I/O applications. MWSCAS ’06, 49th IEEE Int Midwest Symp Circuits Systems (1):566–569Google Scholar
  28. 28.
    Hayes DL, Wang PJ, Asirvatham SJ, Friedman PA, (2008) Pacemaker and cardiac resynchronization timing cycles and electrocardiography. In: Hayes DL, Friedman PA (eds) Cardiac pacing, defibrillation and resynchronization, 2nd edn. Wiley-Blackwell, West Sussex U.KCrossRefGoogle Scholar
  29. 29.
    FCC rules and regulations (1999) MICS Band plan. Part 95, 47 CFR 95.601-95.673 Subpart EGoogle Scholar
  30. 30.
    Savci HS, Sula A, Wang Z, Dogan NS, Arvas E (2005) MICS transceivers: regulatory standards and applications. IEEE Southeast Con 179–182Google Scholar
  31. 31.
    Bradley PD (2006) An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable devices. IEEE Biomed Circuits Syst Conf 158–161Google Scholar
  32. 32.
    Roy K, et al. (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE, 91(2):305–327CrossRefGoogle Scholar
  33. 33.
    Vittoz EA (2006) Origins of weak inversion (or sub-threshold) circuit design. In: Wang A, et al. (eds) Sub-threshold design for ultra low-power systems. Springer, New YorkGoogle Scholar
  34. 34.
    Vittoz EA, Fellrath J (1977) CMOS analog integrated circuits based on weak inversion operation. IEEE J Solid-State Circuits 12(3):224–231CrossRefGoogle Scholar
  35. 35.
    Wang A, et al. (eds) (2006) Sub-threshold design for ultra low-power systems. Springer, New YorkGoogle Scholar
  36. 36.
    Soudris D, Piguet C, Goutis C (eds) (2002) Designing CMOS circuits for low power. Kluwer, Boston MAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.St. Jude Medical, Cardiac Rhythm Management DivisionSunnyvaleUSA

Personalised recommendations