Bio-Medical CMOS ICs pp 371-419 | Cite as
Digital Hearing Aid and Cochlear Implant
Chapter
First Online:
- 2.4k Downloads
Abstract
Approximately 70 million individuals worldwide suffer from hearing loss, which makes it the most common sensory disorder in the world [1–3]. There are estimated 28 million individuals with hearing loss in the United States. Hearing loss affects 17 in 1,000 children under the age of 18, with the incidence increasing with age. Approximately 314 in 1,000 people over the age of 65 have hearing loss, and 40–50% of people 75 and older have hearing loss.
Keywords
Digital Signal Processor Cochlear Implant Interpolation Filter Leakage Path Operational Transconductance Amplifier
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Cooper RA (2008) Quality-of-life technology. IEEE Eng Med Biol Mag 27(2)10–11, Apr 2008CrossRefGoogle Scholar
- 2.Bitner M-Glindzicz (2002) Hereditary deafness and phenotyping in humans. Br Med Bull 63:73–94CrossRefGoogle Scholar
- 3.Tekin M, Arnos KS, Pandya S (2001) Advance in hereditary deafness. Lancet 358:1082–1090CrossRefGoogle Scholar
- 4.National Center for Health Statistics [Online]. Available: http://www.cdc.gov/nchs/
- 5.National Institute on Deafness and Other Communication Disorders (NIDCD), Statistics about hearing disorders, ear infections, and deafness [Online]. Available: http://www.nidcd.nih.gov/health/statistics/hearing.asp
- 6.Acoustical Performance Criteria, Design Requirements and Guidelines for Schools, ANSI Standard S12.60-2002.Google Scholar
- 7.Kochkin S (2001) MarkeTrak VI: The VA and direct mail sales spark growth in hearing aid market. Hearing Rev 8(12):16–24, 63–65Google Scholar
- 8.Seelman KD, Palmer CV, Ortmann A, Mormer E, Guthrie O, Milel J, Brabyn J (2008) Quality-of-life technology for vision and hearing loss. IEEE Eng Med Biol Mag 27(2):40–55, Apr 2008CrossRefGoogle Scholar
- 9.The Royal National Institute for Deaf People (2006) Hearwear–the future of hearing. Exhibition at V&A victoria and albert museum, London, 26 Jul 2005–5 Mar 2006Google Scholar
- 10.Types of Hearing Aids [Online]. Available: http://www.hearingaidscentral.com
- 11.The Future of Hearing Aid Technology [Online]. Available: http://www.starkeypro.com
- 12.Looking at the History of Hearing Aids: the past, present, and future of hearing aid technology [Online]. Available: http://hearing-aids.americahears.com/aid-technology.html
- 13.Peluso V, Vancorenland V, Augusto Marques M, Steyaert MSJ, Sansen W (1998) A 900-mV Low-Power ΣΔ A/D Converter with 77-dB Dynamic Range. IEEE J. Solid-State Circuits 33(12):1887–1897, Dec 1998CrossRefGoogle Scholar
- 14.Yao L, Michiel S,. Steyaert J, Sansen W (2004) A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS. IEEE J. Solid-State Circuits 39(11):1809–1818, Nov 2004CrossRefGoogle Scholar
- 15.Agnew J (1999) Digital signal processing in hearing aids. J Acoustical Society of Am 105(2):1210, Feb 1999CrossRefGoogle Scholar
- 16.Kim S, Lee J-Y, Song S-J, Cho N, Yoo H-J (2006) An energy-efficient analog front-end circuit for a Sub-1-V Digital hearing aid chip. IEEE J. Solid-State Circuits 41(4):876–882, Apr 2006CrossRefGoogle Scholar
- 17.Kim S, Cho N, Song S-J, Yoo H-J (2007) A 0.9 V 96 μW Fully operational digital hearing aid chip. IEEE J. Solid-State Circuits 42(11):2432–2440, Nov 2007CrossRefGoogle Scholar
- 18.Stelmachowicz PG, Hoover B, Lewis DE, Brennan M (2002) Is functional gain really functional? Hearing J 55(11):38–42, Nov 2002Google Scholar
- 19.Kim S, Lee SJ, Cho N, Song S-J, Yoo H-J (2008) A Fully Integrated Digital Hearing Aid Chip With Human Factors Considerations. IEEE J. Solid-State Circuits 43(1):266–274, Jan 2008CrossRefGoogle Scholar
- 20.Kim S, Lee SJ, Cho N, Song S-J, Yoo H-J (2007) A fully integrated digital hearing-aid chip with human-factors considerations. IEEE Int Solid State Circuits Conf Dig. Tech. Papers 154–155, Feb 2007Google Scholar
- 21.Stelmachowicz PG, Hoover B, Lewis DE, Brennan M (2002) Is functional gain really functional? Hearing J 55(11):38–42, Nov 2002Google Scholar
- 22.Dillon H (2001) Hearing aids, 1st edn, Boomerang PressGoogle Scholar
- 23.Kim S, Lee J-Y, Song S-J, Cho N, Yoo H-J (2006) An energy-efficient analog front-end circuit for a Sub-1-V digital hearing aid chip. IEEE J. Solid State Circuits 41(4):876–882, Apr 2006CrossRefGoogle Scholar
- 24.Almadian M (2001) Transmission Line Matrix (TLM) modelling of medical ultrasound. Ph.D. dissertation, Jun 2001Google Scholar
- 25.Nakao K, Nishimura R, Suzuki Y (2006) Calculation of transfer function of acoustic feedback path for in-the-ear hearing aids with a correction for specific acoustic impedance of a tubule. Acoust Sci Tech 27(4):242–244CrossRefGoogle Scholar
- 26.Stelmachowicz PG, Hoover B, Lewis DE, Brennan M (2002) Is functional gain really functional? Hearing J 55(11):38–42, Nov 2002Google Scholar
- 27.Thompson H, Thomas N (2005) A supersonic future, blueprint broadsides 2(2):1–20, Jun 2005Google Scholar
- 28.DUETTM DIGITAL Advanced DSP System with FRONTWAVE, 2003 [Online]. Available: http://www.gennum.com.
- 29.Mangelsdorf CW (200) A variable gain cmos amplifier with exponential gain control. Dig. Symp. VLSI Circuits 146–149, Jun 2000Google Scholar
- 30.Hauptmann J, Dielacher F, Steiner R, Enz CC, Krummenacher F (1992) A low-noise amplifier with automatic gain control and anticlipping control in cmos technology. IEEE J. Solid-state Circuits 27(7):974–981, July 1992CrossRefGoogle Scholar
- 31.Moulton D (1993) About the loudness of sounds and the risk of hearing damage, 1993 [Online]. Available: http://www.moultonlabs.com.
- 32.Gregorian R, Temes GC (1986) Analog MOS integrated circuits Wiley, Ch.5Google Scholar
- 33.Geerts Y, Steyaert M (2002) Design of multi-bit delta-sigma A/D converters. Kluwer academic publishers Ch.2Google Scholar
- 34.Tsividis Y, Krishnapura N, Palaskas Y, Toth L (2003) Internally varying analog circuits minimize power dissipation. IEEE Circuits Devices Mag 19(1):63–72, Jan 2003CrossRefGoogle Scholar
- 35.David A, Johns, Martin K (1997) Analog integrated circuit design, Wiley 1997, Ch.10Google Scholar
- 36.Rabii S, Wooley BA (1997) A 1.8-V digital-audio sigma-delta modulator in 0.8-μm CMOS. IEEE J. Solid-state Circuits 32(6):783–796, June 1997CrossRefGoogle Scholar
- 37.Kim S-E, Song S-J, Kim JK, Kim S, Lee J-Y, Yoo H-J (2004) A small ripple regulated charge pump with automatic pumping control schemes. Dig. IEEE Eur Solid State Circuits Conf 383–386, Sep 2004Google Scholar
- 38.Sauerbrey J, Tille T, Schmitt-Landsiedel D, Thewes R (2002) A 0.7-V MOSFET-Only switched-Opamp Σ-Δ modulator in standard digital CMOS Technology. IEEE J. Solid-state Circuits 37(12):1662–1669, Dec 2002CrossRefGoogle Scholar
- 39.Kim S, Lee J-Y, Song S-J, Cho N, Yoo H-J (2006) An energy-efficient analog front-end circuit for a sub-1-V digital hearing aid chip. IEEE J Solid-State Circuits 41(4):876–882, Apr 2006CrossRefGoogle Scholar
- 40.Yoo J, Kim S, Cho N, Song S-J, Yoo H-J (2006) A 10-μW digital signal processor with adaptive-SNR monitoring for a sub-1 V digital hearing aid. IEEE Int Symp Circuits Syst, May 2006Google Scholar
- 41.Brennan R, Schneider T (1998) A flexible filterbank structure for extensive signal manipulations in digital hearing aids. Dig. IEEE Symp Circuits Syst 6:569–572, May 1998Google Scholar
- 42.Lunner T, Hellgren J (1991) A digital filterbank hearing aid-design, implementation and evaluation. Dig. IEEE Int Conf Acoustics, Speech Signal Process 5:3661–3664, 1991Google Scholar
- 43.Norsworthy SR, Schreier R, Gabor C (1997) Temes, delta-sigma data converters—Theory, design, and simulation, IEEE Press MarketingGoogle Scholar
- 44.Neuteboom H, Kup BMJ, Hanssens M (1997) A DSP-Based Hearing Instrument IC. IEEE J. Solid-State Circuits 32(32):1790–1806, Nov 1997CrossRefGoogle Scholar
- 45.Gata DG, Sjursen W, Hochschild JR, Fattaruso JW, Fang L, Iannelli GR, Jiang Z, Branch CM, Holmes JA, Skorcz ML, Petilli EM, Chen S, Wakeman G, Preves DA, Severin WA (202) A 1.1-V 270-μA Mixed-signal hearing aid chip. IEEE J. Solid-State Circuits 37(12):1670–1678, Dec 2002Google Scholar
- 46.Serra-Graells F, Gomez L, Huertas JL A true 1-V 300-μW CMOS-subthreshold log-domain hearing-aid-on-chip. IEEE J. Solid-State Circuits 39(8):1271–1281, Aug 2004CrossRefGoogle Scholar
- 47.Peoria’s first cochlear implant surgery has grandfather rediscovering life [Online] Available: http://www.pjstar.com/features/x876590686/Peoria-s-first-cochlear-implant-surgery-has-grandfather-rediscovering-life.
- 48.Eyeing smaller, faster, smarter ear implants [Online] Available: http://www.usatoday.com/news/health/2009-08-16-cochlear-implant_N.htm.
- 49.Zeng F-G, Rebscher S, Harrison W, Sun X, Feng H (2008) Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng. 1:115–142CrossRefGoogle Scholar
- 50.An SK (2009) Multi-channel Cochlear Implant. Bio-Medical IC WorkshopGoogle Scholar
- 51.An SK, Park S-I, Jun SB, Lee CJ, Byun KM, Sung JH, Wilson BS,. Rebscher SJ, Oh SH, Kim SJ (2007) Design for a simplified cochlear implant system. IEEE Trans Biomed Eng 54(6):973–982, Jun 2007CrossRefGoogle Scholar
- 52.Wilson BS,. Dorman MF (2008) Cochlear implants: current designs and future possibilities. J. Rehabil Res Dev 45(5):695–730, 2008CrossRefGoogle Scholar
- 53.New hybrid hearing device combining advantages of hearing aids, implants [Online] Available: http://www.sciencedaily.com /releases/2008/04/080417100013.htm
- 54.Gantz BG, Turner CW (2004) Combining acoustic and electrical speech processing: Iowa/Nucleus hybrid implant. Acta Otolaryngol 124:344–347CrossRefGoogle Scholar
- 55.Turner CW, Gantz BJ, Vidal C, et al. (2004) Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing. J. Acoust Soc Am 115(4):1729–1735, Apr 2004CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2011