Digital Hearing Aid and Cochlear Implant

  • Sunyoung KimEmail author
  • Hoi-Jun Yoo
Part of the Integrated Circuits and Systems book series (ICIR)


Approximately 70 million individuals worldwide suffer from hearing loss, which makes it the most common sensory disorder in the world [1–3]. There are estimated 28 million individuals with hearing loss in the United States. Hearing loss affects 17 in 1,000 children under the age of 18, with the incidence increasing with age. Approximately 314 in 1,000 people over the age of 65 have hearing loss, and 40–50% of people 75 and older have hearing loss.


Digital Signal Processor Cochlear Implant Interpolation Filter Leakage Path Operational Transconductance Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cooper RA (2008) Quality-of-life technology. IEEE Eng Med Biol Mag 27(2)10–11, Apr 2008CrossRefGoogle Scholar
  2. 2.
    Bitner M-Glindzicz (2002) Hereditary deafness and phenotyping in humans. Br Med Bull 63:73–94CrossRefGoogle Scholar
  3. 3.
    Tekin M, Arnos KS, Pandya S (2001) Advance in hereditary deafness. Lancet 358:1082–1090CrossRefGoogle Scholar
  4. 4.
    National Center for Health Statistics [Online]. Available:
  5. 5.
    National Institute on Deafness and Other Communication Disorders (NIDCD), Statistics about hearing disorders, ear infections, and deafness [Online]. Available:
  6. 6.
    Acoustical Performance Criteria, Design Requirements and Guidelines for Schools, ANSI Standard S12.60-2002.Google Scholar
  7. 7.
    Kochkin S (2001) MarkeTrak VI: The VA and direct mail sales spark growth in hearing aid market. Hearing Rev 8(12):16–24, 63–65Google Scholar
  8. 8.
    Seelman KD, Palmer CV, Ortmann A, Mormer E, Guthrie O, Milel J, Brabyn J (2008) Quality-of-life technology for vision and hearing loss. IEEE Eng Med Biol Mag 27(2):40–55, Apr 2008CrossRefGoogle Scholar
  9. 9.
    The Royal National Institute for Deaf People (2006) Hearwear–the future of hearing. Exhibition at V&A victoria and albert museum, London, 26 Jul 2005–5 Mar 2006Google Scholar
  10. 10.
    Types of Hearing Aids [Online]. Available:
  11. 11.
    The Future of Hearing Aid Technology [Online]. Available:
  12. 12.
    Looking at the History of Hearing Aids: the past, present, and future of hearing aid technology [Online]. Available:
  13. 13.
    Peluso V, Vancorenland V, Augusto Marques M, Steyaert MSJ, Sansen W (1998) A 900-mV Low-Power ΣΔ A/D Converter with 77-dB Dynamic Range. IEEE J. Solid-State Circuits 33(12):1887–1897, Dec 1998CrossRefGoogle Scholar
  14. 14.
    Yao L, Michiel S,. Steyaert J, Sansen W (2004) A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS. IEEE J. Solid-State Circuits 39(11):1809–1818, Nov 2004CrossRefGoogle Scholar
  15. 15.
    Agnew J (1999) Digital signal processing in hearing aids. J Acoustical Society of Am 105(2):1210, Feb 1999CrossRefGoogle Scholar
  16. 16.
    Kim S, Lee J-Y, Song S-J, Cho N, Yoo H-J (2006) An energy-efficient analog front-end circuit for a Sub-1-V Digital hearing aid chip. IEEE J. Solid-State Circuits 41(4):876–882, Apr 2006CrossRefGoogle Scholar
  17. 17.
    Kim S, Cho N, Song S-J, Yoo H-J (2007) A 0.9 V 96 μW Fully operational digital hearing aid chip. IEEE J. Solid-State Circuits 42(11):2432–2440, Nov 2007CrossRefGoogle Scholar
  18. 18.
    Stelmachowicz PG, Hoover B, Lewis DE, Brennan M (2002) Is functional gain really functional? Hearing J 55(11):38–42, Nov 2002Google Scholar
  19. 19.
    Kim S, Lee SJ, Cho N, Song S-J, Yoo H-J (2008) A Fully Integrated Digital Hearing Aid Chip With Human Factors Considerations. IEEE J. Solid-State Circuits 43(1):266–274, Jan 2008CrossRefGoogle Scholar
  20. 20.
    Kim S, Lee SJ, Cho N, Song S-J, Yoo H-J (2007) A fully integrated digital hearing-aid chip with human-factors considerations. IEEE Int Solid State Circuits Conf Dig. Tech. Papers 154–155, Feb 2007Google Scholar
  21. 21.
    Stelmachowicz PG, Hoover B, Lewis DE, Brennan M (2002) Is functional gain really functional? Hearing J 55(11):38–42, Nov 2002Google Scholar
  22. 22.
    Dillon H (2001) Hearing aids, 1st edn, Boomerang PressGoogle Scholar
  23. 23.
    Kim S, Lee J-Y, Song S-J, Cho N, Yoo H-J (2006) An energy-efficient analog front-end circuit for a Sub-1-V digital hearing aid chip. IEEE J. Solid State Circuits 41(4):876–882, Apr 2006CrossRefGoogle Scholar
  24. 24.
    Almadian M (2001) Transmission Line Matrix (TLM) modelling of medical ultrasound. Ph.D. dissertation, Jun 2001Google Scholar
  25. 25.
    Nakao K, Nishimura R, Suzuki Y (2006) Calculation of transfer function of acoustic feedback path for in-the-ear hearing aids with a correction for specific acoustic impedance of a tubule. Acoust Sci Tech 27(4):242–244CrossRefGoogle Scholar
  26. 26.
    Stelmachowicz PG, Hoover B, Lewis DE, Brennan M (2002) Is functional gain really functional? Hearing J 55(11):38–42, Nov 2002Google Scholar
  27. 27.
    Thompson H, Thomas N (2005) A supersonic future, blueprint broadsides 2(2):1–20, Jun 2005Google Scholar
  28. 28.
    DUETTM DIGITAL Advanced DSP System with FRONTWAVE, 2003 [Online]. Available:
  29. 29.
    Mangelsdorf CW (200) A variable gain cmos amplifier with exponential gain control. Dig. Symp. VLSI Circuits 146–149, Jun 2000Google Scholar
  30. 30.
    Hauptmann J, Dielacher F, Steiner R, Enz CC, Krummenacher F (1992) A low-noise amplifier with automatic gain control and anticlipping control in cmos technology. IEEE J. Solid-state Circuits 27(7):974–981, July 1992CrossRefGoogle Scholar
  31. 31.
    Moulton D (1993) About the loudness of sounds and the risk of hearing damage, 1993 [Online]. Available:
  32. 32.
    Gregorian R, Temes GC (1986) Analog MOS integrated circuits Wiley, Ch.5Google Scholar
  33. 33.
    Geerts Y, Steyaert M (2002) Design of multi-bit delta-sigma A/D converters. Kluwer academic publishers Ch.2Google Scholar
  34. 34.
    Tsividis Y, Krishnapura N, Palaskas Y, Toth L (2003) Internally varying analog circuits minimize power dissipation. IEEE Circuits Devices Mag 19(1):63–72, Jan 2003CrossRefGoogle Scholar
  35. 35.
    David A, Johns, Martin K (1997) Analog integrated circuit design, Wiley 1997, Ch.10Google Scholar
  36. 36.
    Rabii S, Wooley BA (1997) A 1.8-V digital-audio sigma-delta modulator in 0.8-μm CMOS. IEEE J. Solid-state Circuits 32(6):783–796, June 1997CrossRefGoogle Scholar
  37. 37.
    Kim S-E, Song S-J, Kim JK, Kim S, Lee J-Y, Yoo H-J (2004) A small ripple regulated charge pump with automatic pumping control schemes. Dig. IEEE Eur Solid State Circuits Conf 383–386, Sep 2004Google Scholar
  38. 38.
    Sauerbrey J, Tille T, Schmitt-Landsiedel D, Thewes R (2002) A 0.7-V MOSFET-Only switched-Opamp Σ-Δ modulator in standard digital CMOS Technology. IEEE J. Solid-state Circuits 37(12):1662–1669, Dec 2002CrossRefGoogle Scholar
  39. 39.
    Kim S, Lee J-Y, Song S-J, Cho N, Yoo H-J (2006) An energy-efficient analog front-end circuit for a sub-1-V digital hearing aid chip. IEEE J Solid-State Circuits 41(4):876–882, Apr 2006CrossRefGoogle Scholar
  40. 40.
    Yoo J, Kim S, Cho N, Song S-J, Yoo H-J (2006) A 10-μW digital signal processor with adaptive-SNR monitoring for a sub-1 V digital hearing aid. IEEE Int Symp Circuits Syst, May 2006Google Scholar
  41. 41.
    Brennan R, Schneider T (1998) A flexible filterbank structure for extensive signal manipulations in digital hearing aids. Dig. IEEE Symp Circuits Syst 6:569–572, May 1998Google Scholar
  42. 42.
    Lunner T, Hellgren J (1991) A digital filterbank hearing aid-design, implementation and evaluation. Dig. IEEE Int Conf Acoustics, Speech Signal Process 5:3661–3664, 1991Google Scholar
  43. 43.
    Norsworthy SR, Schreier R, Gabor C (1997) Temes, delta-sigma data converters—Theory, design, and simulation, IEEE Press MarketingGoogle Scholar
  44. 44.
    Neuteboom H, Kup BMJ, Hanssens M (1997) A DSP-Based Hearing Instrument IC. IEEE J. Solid-State Circuits 32(32):1790–1806, Nov 1997CrossRefGoogle Scholar
  45. 45.
    Gata DG, Sjursen W, Hochschild JR, Fattaruso JW, Fang L, Iannelli GR, Jiang Z, Branch CM, Holmes JA, Skorcz ML, Petilli EM, Chen S, Wakeman G, Preves DA, Severin WA (202) A 1.1-V 270-μA Mixed-signal hearing aid chip. IEEE J. Solid-State Circuits 37(12):1670–1678, Dec 2002Google Scholar
  46. 46.
    Serra-Graells F, Gomez L, Huertas JL A true 1-V 300-μW CMOS-subthreshold log-domain hearing-aid-on-chip. IEEE J. Solid-State Circuits 39(8):1271–1281, Aug 2004CrossRefGoogle Scholar
  47. 47.
    Peoria’s first cochlear implant surgery has grandfather rediscovering life [Online] Available:
  48. 48.
    Eyeing smaller, faster, smarter ear implants [Online] Available:
  49. 49.
    Zeng F-G, Rebscher S, Harrison W, Sun X, Feng H (2008) Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng. 1:115–142CrossRefGoogle Scholar
  50. 50.
    An SK (2009) Multi-channel Cochlear Implant. Bio-Medical IC WorkshopGoogle Scholar
  51. 51.
    An SK, Park S-I, Jun SB, Lee CJ, Byun KM, Sung JH, Wilson BS,. Rebscher SJ, Oh SH, Kim SJ (2007) Design for a simplified cochlear implant system. IEEE Trans Biomed Eng 54(6):973–982, Jun 2007CrossRefGoogle Scholar
  52. 52.
    Wilson BS,. Dorman MF (2008) Cochlear implants: current designs and future possibilities. J. Rehabil Res Dev 45(5):695–730, 2008CrossRefGoogle Scholar
  53. 53.
    New hybrid hearing device combining advantages of hearing aids, implants [Online] Available: /releases/2008/04/080417100013.htm
  54. 54.
    Gantz BG, Turner CW (2004) Combining acoustic and electrical speech processing: Iowa/Nucleus hybrid implant. Acta Otolaryngol 124:344–347CrossRefGoogle Scholar
  55. 55.
    Turner CW, Gantz BJ, Vidal C, et al. (2004) Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing. J. Acoust Soc Am 115(4):1729–1735, Apr 2004CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Interuniversity Microelectronics Center (IMEC)LeuvenBelgium
  2. 2.Department of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations