Skip to main content

Digital Hearing Aid and Cochlear Implant

  • Chapter
  • First Online:
Bio-Medical CMOS ICs

Part of the book series: Integrated Circuits and Systems ((ICIR))

  • 2777 Accesses

Abstract

Approximately 70 million individuals worldwide suffer from hearing loss, which makes it the most common sensory disorder in the world [1–3]. There are estimated 28 million individuals with hearing loss in the United States. Hearing loss affects 17 in 1,000 children under the age of 18, with the incidence increasing with age. Approximately 314 in 1,000 people over the age of 65 have hearing loss, and 40–50% of people 75 and older have hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper RA (2008) Quality-of-life technology. IEEE Eng Med Biol Mag 27(2)10–11, Apr 2008

    Article  Google Scholar 

  2. Bitner M-Glindzicz (2002) Hereditary deafness and phenotyping in humans. Br Med Bull 63:73–94

    Article  Google Scholar 

  3. Tekin M, Arnos KS, Pandya S (2001) Advance in hereditary deafness. Lancet 358:1082–1090

    Article  Google Scholar 

  4. National Center for Health Statistics [Online]. Available: http://www.cdc.gov/nchs/

  5. National Institute on Deafness and Other Communication Disorders (NIDCD), Statistics about hearing disorders, ear infections, and deafness [Online]. Available: http://www.nidcd.nih.gov/health/statistics/hearing.asp

  6. Acoustical Performance Criteria, Design Requirements and Guidelines for Schools, ANSI Standard S12.60-2002.

    Google Scholar 

  7. Kochkin S (2001) MarkeTrak VI: The VA and direct mail sales spark growth in hearing aid market. Hearing Rev 8(12):16–24, 63–65

    Google Scholar 

  8. Seelman KD, Palmer CV, Ortmann A, Mormer E, Guthrie O, Milel J, Brabyn J (2008) Quality-of-life technology for vision and hearing loss. IEEE Eng Med Biol Mag 27(2):40–55, Apr 2008

    Article  Google Scholar 

  9. The Royal National Institute for Deaf People (2006) Hearwear–the future of hearing. Exhibition at V&A victoria and albert museum, London, 26 Jul 2005–5 Mar 2006

    Google Scholar 

  10. Types of Hearing Aids [Online]. Available: http://www.hearingaidscentral.com

  11. The Future of Hearing Aid Technology [Online]. Available: http://www.starkeypro.com

  12. Looking at the History of Hearing Aids: the past, present, and future of hearing aid technology [Online]. Available: http://hearing-aids.americahears.com/aid-technology.html

  13. Peluso V, Vancorenland V, Augusto Marques M, Steyaert MSJ, Sansen W (1998) A 900-mV Low-Power ΣΔ A/D Converter with 77-dB Dynamic Range. IEEE J. Solid-State Circuits 33(12):1887–1897, Dec 1998

    Article  Google Scholar 

  14. Yao L, Michiel S,. Steyaert J, Sansen W (2004) A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS. IEEE J. Solid-State Circuits 39(11):1809–1818, Nov 2004

    Article  Google Scholar 

  15. Agnew J (1999) Digital signal processing in hearing aids. J Acoustical Society of Am 105(2):1210, Feb 1999

    Article  Google Scholar 

  16. Kim S, Lee J-Y, Song S-J, Cho N, Yoo H-J (2006) An energy-efficient analog front-end circuit for a Sub-1-V Digital hearing aid chip. IEEE J. Solid-State Circuits 41(4):876–882, Apr 2006

    Article  Google Scholar 

  17. Kim S, Cho N, Song S-J, Yoo H-J (2007) A 0.9 V 96 μW Fully operational digital hearing aid chip. IEEE J. Solid-State Circuits 42(11):2432–2440, Nov 2007

    Article  Google Scholar 

  18. Stelmachowicz PG, Hoover B, Lewis DE, Brennan M (2002) Is functional gain really functional? Hearing J 55(11):38–42, Nov 2002

    Google Scholar 

  19. Kim S, Lee SJ, Cho N, Song S-J, Yoo H-J (2008) A Fully Integrated Digital Hearing Aid Chip With Human Factors Considerations. IEEE J. Solid-State Circuits 43(1):266–274, Jan 2008

    Article  Google Scholar 

  20. Kim S, Lee SJ, Cho N, Song S-J, Yoo H-J (2007) A fully integrated digital hearing-aid chip with human-factors considerations. IEEE Int Solid State Circuits Conf Dig. Tech. Papers 154–155, Feb 2007

    Google Scholar 

  21. Stelmachowicz PG, Hoover B, Lewis DE, Brennan M (2002) Is functional gain really functional? Hearing J 55(11):38–42, Nov 2002

    Google Scholar 

  22. Dillon H (2001) Hearing aids, 1st edn, Boomerang Press

    Google Scholar 

  23. Kim S, Lee J-Y, Song S-J, Cho N, Yoo H-J (2006) An energy-efficient analog front-end circuit for a Sub-1-V digital hearing aid chip. IEEE J. Solid State Circuits 41(4):876–882, Apr 2006

    Article  Google Scholar 

  24. Almadian M (2001) Transmission Line Matrix (TLM) modelling of medical ultrasound. Ph.D. dissertation, Jun 2001

    Google Scholar 

  25. Nakao K, Nishimura R, Suzuki Y (2006) Calculation of transfer function of acoustic feedback path for in-the-ear hearing aids with a correction for specific acoustic impedance of a tubule. Acoust Sci Tech 27(4):242–244

    Article  Google Scholar 

  26. Stelmachowicz PG, Hoover B, Lewis DE, Brennan M (2002) Is functional gain really functional? Hearing J 55(11):38–42, Nov 2002

    Google Scholar 

  27. Thompson H, Thomas N (2005) A supersonic future, blueprint broadsides 2(2):1–20, Jun 2005

    Google Scholar 

  28. DUETTM DIGITAL Advanced DSP System with FRONTWAVE, 2003 [Online]. Available: http://www.gennum.com.

  29. Mangelsdorf CW (200) A variable gain cmos amplifier with exponential gain control. Dig. Symp. VLSI Circuits 146–149, Jun 2000

    Google Scholar 

  30. Hauptmann J, Dielacher F, Steiner R, Enz CC, Krummenacher F (1992) A low-noise amplifier with automatic gain control and anticlipping control in cmos technology. IEEE J. Solid-state Circuits 27(7):974–981, July 1992

    Article  Google Scholar 

  31. Moulton D (1993) About the loudness of sounds and the risk of hearing damage, 1993 [Online]. Available: http://www.moultonlabs.com.

  32. Gregorian R, Temes GC (1986) Analog MOS integrated circuits Wiley, Ch.5

    Google Scholar 

  33. Geerts Y, Steyaert M (2002) Design of multi-bit delta-sigma A/D converters. Kluwer academic publishers Ch.2

    Google Scholar 

  34. Tsividis Y, Krishnapura N, Palaskas Y, Toth L (2003) Internally varying analog circuits minimize power dissipation. IEEE Circuits Devices Mag 19(1):63–72, Jan 2003

    Article  Google Scholar 

  35. David A, Johns, Martin K (1997) Analog integrated circuit design, Wiley 1997, Ch.10

    Google Scholar 

  36. Rabii S, Wooley BA (1997) A 1.8-V digital-audio sigma-delta modulator in 0.8-μm CMOS. IEEE J. Solid-state Circuits 32(6):783–796, June 1997

    Article  Google Scholar 

  37. Kim S-E, Song S-J, Kim JK, Kim S, Lee J-Y, Yoo H-J (2004) A small ripple regulated charge pump with automatic pumping control schemes. Dig. IEEE Eur Solid State Circuits Conf 383–386, Sep 2004

    Google Scholar 

  38. Sauerbrey J, Tille T, Schmitt-Landsiedel D, Thewes R (2002) A 0.7-V MOSFET-Only switched-Opamp Σ-Δ modulator in standard digital CMOS Technology. IEEE J. Solid-state Circuits 37(12):1662–1669, Dec 2002

    Article  Google Scholar 

  39. Kim S, Lee J-Y, Song S-J, Cho N, Yoo H-J (2006) An energy-efficient analog front-end circuit for a sub-1-V digital hearing aid chip. IEEE J Solid-State Circuits 41(4):876–882, Apr 2006

    Article  Google Scholar 

  40. Yoo J, Kim S, Cho N, Song S-J, Yoo H-J (2006) A 10-μW digital signal processor with adaptive-SNR monitoring for a sub-1 V digital hearing aid. IEEE Int Symp Circuits Syst, May 2006

    Google Scholar 

  41. Brennan R, Schneider T (1998) A flexible filterbank structure for extensive signal manipulations in digital hearing aids. Dig. IEEE Symp Circuits Syst 6:569–572, May 1998

    Google Scholar 

  42. Lunner T, Hellgren J (1991) A digital filterbank hearing aid-design, implementation and evaluation. Dig. IEEE Int Conf Acoustics, Speech Signal Process 5:3661–3664, 1991

    Google Scholar 

  43. Norsworthy SR, Schreier R, Gabor C (1997) Temes, delta-sigma data converters—Theory, design, and simulation, IEEE Press Marketing

    Google Scholar 

  44. Neuteboom H, Kup BMJ, Hanssens M (1997) A DSP-Based Hearing Instrument IC. IEEE J. Solid-State Circuits 32(32):1790–1806, Nov 1997

    Article  Google Scholar 

  45. Gata DG, Sjursen W, Hochschild JR, Fattaruso JW, Fang L, Iannelli GR, Jiang Z, Branch CM, Holmes JA, Skorcz ML, Petilli EM, Chen S, Wakeman G, Preves DA, Severin WA (202) A 1.1-V 270-μA Mixed-signal hearing aid chip. IEEE J. Solid-State Circuits 37(12):1670–1678, Dec 2002

    Google Scholar 

  46. Serra-Graells F, Gomez L, Huertas JL A true 1-V 300-μW CMOS-subthreshold log-domain hearing-aid-on-chip. IEEE J. Solid-State Circuits 39(8):1271–1281, Aug 2004

    Article  Google Scholar 

  47. Peoria’s first cochlear implant surgery has grandfather rediscovering life [Online] Available: http://www.pjstar.com/features/x876590686/Peoria-s-first-cochlear-implant-surgery-has-grandfather-rediscovering-life.

  48. Eyeing smaller, faster, smarter ear implants [Online] Available: http://www.usatoday.com/news/health/2009-08-16-cochlear-implant_N.htm.

  49. Zeng F-G, Rebscher S, Harrison W, Sun X, Feng H (2008) Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng. 1:115–142

    Article  Google Scholar 

  50. An SK (2009) Multi-channel Cochlear Implant. Bio-Medical IC Workshop

    Google Scholar 

  51. An SK, Park S-I, Jun SB, Lee CJ, Byun KM, Sung JH, Wilson BS,. Rebscher SJ, Oh SH, Kim SJ (2007) Design for a simplified cochlear implant system. IEEE Trans Biomed Eng 54(6):973–982, Jun 2007

    Article  Google Scholar 

  52. Wilson BS,. Dorman MF (2008) Cochlear implants: current designs and future possibilities. J. Rehabil Res Dev 45(5):695–730, 2008

    Article  Google Scholar 

  53. New hybrid hearing device combining advantages of hearing aids, implants [Online] Available: http://www.sciencedaily.com /releases/2008/04/080417100013.htm

  54. Gantz BG, Turner CW (2004) Combining acoustic and electrical speech processing: Iowa/Nucleus hybrid implant. Acta Otolaryngol 124:344–347

    Article  Google Scholar 

  55. Turner CW, Gantz BJ, Vidal C, et al. (2004) Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing. J. Acoust Soc Am 115(4):1729–1735, Apr 2004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunyoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, S., Yoo, HJ. (2011). Digital Hearing Aid and Cochlear Implant. In: Yoo, HJ., van Hoof, C. (eds) Bio-Medical CMOS ICs. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6597-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6597-4_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6596-7

  • Online ISBN: 978-1-4419-6597-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics