Skip to main content

Adaptive Finite Element Approximation of the Francfort–Marigo Model of Brittle Fracture

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 42))

Abstract

The energy of the Francfort–Marigo model of brittle fracture can be approximated, in the sense of Γ-convergence, by the Ambrosio-Tortorelli functional. In this work we formulate and analyze an adaptive finite element algorithm, combining an inexact Newton method with residual-driven adaptive mesh refinement, for the computation of its (local) minimizers. We prove that the sequence generated by this algorithm converges to a critical point.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7), 6, 105–123 (1992)

    Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. Bourdin, B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interf. Free Bound. 9, 411–430 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourdin, B., Francfort, G., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids. 48, 797–826 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Braides, A.: Γ-Convergence for Beginners. Vol. 22 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford (2002)

    Google Scholar 

  6. Burke, S., Ortner, C., Süli, E.: An adaptive finite element approximation of a variational model of brittle fracture. SIAM J. Numer. Anal., Vol. 48, No. 3. Published online 1 July 2010. DOI: 10.1137/080741033

    Google Scholar 

  7. Cascon, J., Kreuzer, C., Nochetto, R., Siebert, K.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ciarlet, P., Raviart, P.-A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2, 17–31 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dal Maso, G., Francfort, G., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 111–111 (2005)

    MathSciNet  Google Scholar 

  10. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162, 101–135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Francfort, G., Larsen, C.: Existence and convergence for quasi-static evolution in brittle fracture. Comm. Pure Appl. Math. 56, 1465–1500 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Francfort, G., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids. 46, 1319–1342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Giacomini, A.: Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Partial Diff. Eqs. 22, 129–172 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Griffith, A.: The phenomena of rupture and flow in solids. Philosophical Trans. R. Soc. Lond. 221, 163–198 (1921)

    Article  Google Scholar 

  16. Korotov, S., Křížek, M., Neittaanmäki, P.: Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comp. 70, 107–119 (2001) (electronic)

    Google Scholar 

  17. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall Inc., Englewood Cliffs, NJ, USA (1973)

    MATH  Google Scholar 

  19. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Vol. 1054 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, New York (1984)

    Google Scholar 

  20. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley & Teubner, New York (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siobhan Burke .

Editor information

Editors and Affiliations

Additional information

Dedicated to Gradimir V. Milovanović on his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burke, S., Ortner, C., Süli, E. (2010). Adaptive Finite Element Approximation of the Francfort–Marigo Model of Brittle Fracture. In: Gautschi, W., Mastroianni, G., Rassias, T. (eds) Approximation and Computation. Springer Optimization and Its Applications, vol 42. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6594-3_19

Download citation

Publish with us

Policies and ethics