Skip to main content

Monitoring Population Membrane Potential Signals from Neocortex

  • Chapter
  • First Online:

Abstract

Voltage-sensitive dyes (VSDs) and optical imaging are useful tools for studying spatiotemporal patterns of population neuronal activity in cortical tissue. Using a photodiode array and absorption dyes, we are able to record simultaneously from hundreds of points with sensitivity comparable to local field potential recordings. Since absorption dyes have less phototoxicity than fluorescent dyes, the total recording time in each slice can be 1,000–2,000 s, which can be divided into hundreds of short recording trials over several hours. In this chapter, we will discuss methodological details for achieving reliable VSD imaging with high sensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agmon A, Connors BW (1992) Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J Neurosci 12:319–329.

    PubMed  CAS  Google Scholar 

  • Albowitz B, Kuhnt U (1993) Evoked changes of membrane potential in guinea pig sensory neocortical slices: an analysis with voltage-sensitive dyes and a fast optical recording method. Exp Brain Res 93:213–225.

    Article  PubMed  CAS  Google Scholar 

  • Bai L, Huang X, Yang Q, Wu JY (2006) Spatiotemporal patterns of an evoked network oscillation in neocortical slices: coupled local oscillators. J Neurophysiol 96:2528–2538.

    Article  PubMed  Google Scholar 

  • Bao W, Wu JY (2003) Propagating wave and irregular dynamics: spatiotemporal patterns of cholinergic theta oscillations in neocortex in vitro. J Neuro­physiol 90:333–341.

    Article  PubMed  Google Scholar 

  • Cohen LB, Lesher S (1986) Optical monitoring of membrane potential: methods of multisite optical measurement. Soc Gen Physiol Ser 40:71–99.

    PubMed  CAS  Google Scholar 

  • Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol 83:35–88.

    PubMed  CAS  Google Scholar 

  • Cohen LB, Keynes RD, Hille B (1968) Light scattering and birefringence changes during nerve activity. Nature 218:438–441.

    Article  PubMed  CAS  Google Scholar 

  • Colom LV, Saggau P (1994) Spontaneous interictal-like activity originates in multiple areas of the CA2-CA3 region of hippocampal slices. J Neurophysiol 71:1574–1585.

    PubMed  CAS  Google Scholar 

  • Demir R, Haberly LB, Jackson MB (1999) Sustained and accelerating activity at two discrete sites generate epileptiform discharges in slices of piriform cortex. J Neurosci 19:1294–1306.

    PubMed  CAS  Google Scholar 

  • Demir R, Haberly LB, Jackson MB (2000) Characteristics of plateau activity during the latent period prior to epileptiform discharges in slices from rat piriform cortex. J Neurophysiol 83:1088–1098.

    PubMed  CAS  Google Scholar 

  • Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29:33–44.

    Article  PubMed  CAS  Google Scholar 

  • Ferezou I, Bolea S, Petersen CC (2006) Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50:617–629.

    Article  PubMed  CAS  Google Scholar 

  • Flint AC, Connors BW (1996) Two types of network oscillations in neocortex mediated by distinct glutamate receptor subtypes and neuronal populations. J Neurophysiol 75:951–957.

    PubMed  CAS  Google Scholar 

  • Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Manker A, Segal M (1982a) Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes. J Physiol 333:269–291.

    PubMed  CAS  Google Scholar 

  • Grinvald A, Hildesheim R, Farber IC, Anglister L (1982b) Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J 39:301–308.

    Article  PubMed  CAS  Google Scholar 

  • Gupta RK, Salzberg BM et al (1981) Improvements in optical methods for measuring rapid changes in membrane potential. J Membr Biol 58:123–137.

    Article  PubMed  CAS  Google Scholar 

  • Hirata Y, Sawaguchi T (2008) Functional columns in the primate prefrontal cortex revealed by optical imaging in vitro. Neurosci Res 61:1–10.

    Article  PubMed  Google Scholar 

  • Hirota A, Sato K, Momose-Sato Y, Sakai T, Kamino K (1995) A new simultaneous 1020-site optical recording system for monitoring neural activity using voltage-sensitive dyes. J Neurosci Methods 56:187–194.

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Troy WC et al (2004) Spiral waves in disinhibited mammalian neocortex. J Neurosci 24:9897–9902.

    Article  PubMed  CAS  Google Scholar 

  • Jalife J (2003) Rotors and spiral waves in atrial fibrillation. J Cardiovasc Electrophysiol 14:776–780.

    Article  PubMed  Google Scholar 

  • Jin W, Zhang RJ, Wu JY (2002) Voltage-sensitive dye imaging of population neuronal activity in cortical tissue. J Neurosci Methods 115:13–27.

    Article  PubMed  Google Scholar 

  • Kojima S, Nakamura T et al (1999) Optical detection of synaptically induced glutamate transport in hippocampal slices. J Neurosci 19:2580–2588.

    PubMed  CAS  Google Scholar 

  • Laaris N, Carlson GC, Keller A (2000) Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci 20:1529–1537.

    PubMed  CAS  Google Scholar 

  • Lippert MT, Takagaki K, Xu W, Huang X, Wu JY (2007) Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. J Neurophysiol 98:502–512.

    Article  PubMed  Google Scholar 

  • Loew LM, Cohen LB et al (1992) A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Membr Biol 130:1–10.

    PubMed  CAS  Google Scholar 

  • London JA, Cohen LB, Wu JY (1989) Optical recordings of the cortical response to whisker stimulation before and after the addition of an epileptogenic agent. J Neurosci 9:2182–2190.

    PubMed  CAS  Google Scholar 

  • Luhmann HJ, Prince DA (1990) Transient expression of polysynaptic NMDA receptor-mediated activity during neocortical development. Neurosci Lett 111:109–115.

    Article  PubMed  CAS  Google Scholar 

  • Lukatch HS, MacIver MB (1997) Physiology, pharmacology, and topo­graphy of cholinergic neocortical oscillations in vitro. J Neurophysiol 77:2427–2445.

    PubMed  CAS  Google Scholar 

  • Ma HT, Wu CH, Wu JY (2004) Initiation of spontaneous epileptiform events in the rat neocortex in vivo. J Neurophysiol 91:934–945.

    Article  PubMed  Google Scholar 

  • MacLean JN, Fenstermaker V, Watson BO, Yuste R (2006) A visual thalamocortical slice. Nat Methods 3:129–134.

    Article  PubMed  CAS  Google Scholar 

  • Mann EO, Radcliffe CA, Paulsen O (2005) Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. J Physiol 562:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Metherate R, Cruikshank SJ (1999) Thalamocortical inputs trigger a propagating envelope of gamma-band activity in auditory cortex in vitro. Exp Brain Res 126:160–174.

    Article  PubMed  CAS  Google Scholar 

  • Mochida H, Sato K et al (2001) Optical imaging of spreading depolarization waves triggered by spinal nerve stimulation in the chick embryo: possible mechanisms for large-scale coactivation of the central nervous system. Eur J Neurosci 14:809–820.

    Article  PubMed  CAS  Google Scholar 

  • Momose-Sato Y, Sato K et al. (1999) Evaluation of voltage-sensitive dyes for long-term recording of neural activity in the hippocampus. J Membr Biol 172:145–157.

    Article  PubMed  CAS  Google Scholar 

  • Orbach HS, Cohen LB, Grinvald A (1985) Optical mapping of electrical activity in rat somatosensory and visual cortex. J Neurosci 5:1886–1895.

    PubMed  CAS  Google Scholar 

  • Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56:339–355.

    Article  PubMed  CAS  Google Scholar 

  • Petersen CC, Grinvald A, Sakmann B (2003a) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23:1298–1309.

    PubMed  CAS  Google Scholar 

  • Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003b) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci U S A 100:13638–13643.

    Article  PubMed  CAS  Google Scholar 

  • Ross WN, Salzberg BM et al (1977) Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: optical measurement of membrane potential. J Membr Biol 33:141–183.

    Article  PubMed  CAS  Google Scholar 

  • Senseman DM, Vasquez S, Nash PL (1990) Animated pseudocolor activity maps PAMs: scientific visualization of brain electrical activity. In: Schild D (ed) Chemosensory information processing. NATO ASI Series, Vol. H39. Springer-Verlag, Berlin.

    Google Scholar 

  • Shoham D, Glaser DE et al (1999) Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24:791–802.

    Article  PubMed  CAS  Google Scholar 

  • Slovin H, Arieli A, Hildesheim R, Grinvald A (2002) Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. J Neurophysiol 88:3421–3438.

    Article  PubMed  Google Scholar 

  • Tanifuji M, Sugiyama T, Murase K (1994) Horizontal propagation of excitation in rat visual cortical slices revealed by optical imaging. Science 266:1057–1059.

    Article  PubMed  CAS  Google Scholar 

  • Tasaki I, Watanabe A, Sandlin R, Carnay L (1968) Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci U S A 61:883–888.

    Article  PubMed  CAS  Google Scholar 

  • Tsau Y, Guan L, Wu JY (1998) Initiation of spontaneous epileptiform activity in the neocortical slice. J Neurophysiol 80:978–982.

    PubMed  CAS  Google Scholar 

  • Tsau Y, Guan L, Wu JY (1999) Epileptiform activity can be initiated in various neocortical layers: an optical imaging study. J Neurophysiol 82: 1965–1973.

    PubMed  CAS  Google Scholar 

  • Winfree AT (2001) The geometry of biological time. Springer, New York.

    Google Scholar 

  • Wu JY, Cohen LB (1993) Fast multisite optical measurement of membrane potential. In: Mason WT (ed) Biological techniques: fluorescent and luminescent probes for biological activity. Academic Press, New York.

    Google Scholar 

  • Wu JY, Guan L, Tsau Y (1999) Propagating activation during oscillations and evoked responses in neocortical slices. J Neurosci 19:5005–5015.

    PubMed  CAS  Google Scholar 

  • Wu JY, Guan L, Bai L, Yang Q (2001) Spatiotemporal properties of an evoked population activity in rat sensory cortical slices. J Neurophysiol 86:2461–2474.

    PubMed  CAS  Google Scholar 

  • Xu W, Huang X, Takagaki K, Wu JY (2007) Compression and reflection of visually evoked cortical waves. Neuron 55:119–129.

    Article  PubMed  Google Scholar 

  • Zecevic D (1996) Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature 381:322–325.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH NS036477, NS059034, a Whitehall Foundation grant to JYW, and a fellowship grant from the American Epilepsy Society and Lennox Trust Fund to XH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huang, X., Xu, W., Takagaki, K., Wu, JY. (2010). Monitoring Population Membrane Potential Signals from Neocortex. In: Canepari, M., Zecevic, D. (eds) Membrane Potential Imaging in the Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6558-5_7

Download citation

Publish with us

Policies and ethics