Skip to main content

Genetically Encoded Protein Sensors of Membrane Potential

  • Chapter
  • First Online:

Abstract

Organic voltage-sensitive dyes offer very high spatial and temporal resolution for imaging neuronal function. Further progress in imaging activity is expected from the emergent development of genetically encoded fluorescent sensors of membrane potential. These fluorescent protein (FP) voltage sensors overcome some drawbacks of organic voltage sensitive dyes such as non-specificity of cell staining and the low accessibility of the dye to some cell types. In a transgenic animal a genetically encoded sensor could in principle be expressed specifically in any cell type and would have the advantage of staining only the cell population determined by the specificity of the promoter used to drive expression. Challenges remain. First, the response time course of many sensors is slow, with time constants of ∼100 ms. This results in a small fractional fluorescence change, ΔF/F, for action potentials and other brief voltage changes. Second, there are no published reports of attempts to express FP-voltage sensors in transgenic animals. Here we critically review the current status of these developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    * Note added in proof: Signals from FP voltage sensors in transgenic mice were recently reported (Akemann et al. 2010)

References

  • Akemann W, Lundby A, Mutoh H, Knöpfel T (2009) Effect of voltage sensitive fluorescent proteins on neuronal excitability. Biophys J 96:3959–3976[au3].

    Google Scholar 

  • Akemann W, Mutoh H, Perron A, Rossier J, Knopfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluoresent proteins. Nature Methods 10:643–649.

    Google Scholar 

  • Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516.

    Article  PubMed  CAS  Google Scholar 

  • Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96:11241–11246.

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ, Kosmidis EK et al (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25:245–282.

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ, Lee H et al (2007) Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J Neurosci Meth 161:32–38.

    Article  CAS  Google Scholar 

  • Blunck R, Chanda B, Bezanilla F (2005) Nano to micro-fluorescence measurements of electric fields in molecules and genetically specified neurons. J Membr Biol 208:91–10.2.

    Article  PubMed  CAS  Google Scholar 

  • Boyden ES, Feng J, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268.

    Article  PubMed  CAS  Google Scholar 

  • Brown JE, Cohen LB et al (1975) Rapid changes in intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axon. Biophys J 15:1155–1160.

    Article  PubMed  CAS  Google Scholar 

  • Canepari M, Djurisic M, Zecevic D (2007) Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium-imaging study. J Physiol 580:463–484.

    Article  PubMed  CAS  Google Scholar 

  • Chanda B, Blunck R et al (2005) A hybrid approach to measuring electrical activity in genetically specified neurons. Nat Neurosci 8:1619–1626.

    Article  PubMed  CAS  Google Scholar 

  • Davila HV, Salzberg BM, Cohen LB, Waggoner AS (1973) A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat New Biol 241:159–160.

    PubMed  CAS  Google Scholar 

  • DiFranco M, Capote J, Quiñonez M, Vergara JL (2007) Voltage-dependent dynamic FRET signals from the transverse tubules in mammalian skeletal muscle fibers. J Gen Physiol 130:581–600.

    Article  PubMed  CAS  Google Scholar 

  • Dimitrov D, He Y et al (2007) Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS ONE 2:e440.

    Article  PubMed  Google Scholar 

  • Fernández JM, Taylor RE, Bezanilla F (1983) Induced capacitance in the squid giant axon. Lipophilic ion displacement currents. J Gen Physiol 82:331–346.

    Article  PubMed  Google Scholar 

  • Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5: 874–885.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Hildesheim R, Farber IC, Anglister L (1982) Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J 39:301–308.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero G, Siegel MS, Roska B, Loots E, Isacoff EY (2002) Tuning FlaSh: redesign of the dynamics, voltage range and color of the genetically-encoded optical sensor of membrane potential. Biophys J 83:3607–3618.

    Article  PubMed  CAS  Google Scholar 

  • Hinner MJ, Hübener G, Fromherz P (2006) Genetic targeting of individual cells with a voltage-sensitive dye through enzymatic activation of membrane binding. ChemBioChem 7:495–505.

    Article  PubMed  CAS  Google Scholar 

  • Kalyanaraman B, Feix JB, Sieber F, Thomas JP, Girotti AW (1987) Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen. Proc Natl Acad Sci USA 84:2999–3003.

    Article  PubMed  CAS  Google Scholar 

  • Knöpfel T, Tomita K, Shimazaki R, Sakai R (2003) Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins. Methods 30:42–48.

    Article  PubMed  Google Scholar 

  • Kohout SC, Ulbrich MH, Bell SC, Isacoff EY (2007) Subunit organization and functional transitions in Ci-VSP. Nat Struct Mol Biol 15:106–108.

    Article  PubMed  Google Scholar 

  • Loew LM, Cohen LB, Salzberg BM, Obaid AL, Bezanilla F (1985) Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys J 47:71–77.

    Article  PubMed  CAS  Google Scholar 

  • Lundby A, Mutoh H, Dimitrov D, Akemann W, Knöpfel T (2008) Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS ONE 3:e2514.

    Article  PubMed  Google Scholar 

  • MacDonald VW, Jobsis FF (1976) Spectrophotometric studies on the pH of frog skeletal muscle. pH change during and after contractile activity. J Gen Physiol 68:179–195.

    Article  PubMed  CAS  Google Scholar 

  • Miesenbock G, Kevrekidis IG (2005) Optical imaging and control of genetically designated neurons in functioning circuits. Ann Rev Neurosci 28:533–563.

    Article  PubMed  Google Scholar 

  • Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243.

    Article  PubMed  CAS  Google Scholar 

  • Mutoh H, Perron A et al (2009) Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS ONE 4:e4555.

    Article  PubMed  Google Scholar 

  • Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotech 19:137–141.

    Article  CAS  Google Scholar 

  • Perozo E, MacKinnon R, Bezanilla F, Stefani E (1993) Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron 11:353–358.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey SI, Moran MM, Chong JA, Clapman DE (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–1216.

    Article  PubMed  CAS  Google Scholar 

  • Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318.

    Article  PubMed  CAS  Google Scholar 

  • Salzberg BM, Obaid AL, Bezanilla F (1993) Microsecond response of a voltage-sensitive merocyanine dye: fast voltage-clamp measurements on squid giant axon. Japn J Physiol 43 (Suppl 1):S37–S41.

    Google Scholar 

  • Sasaki M, Takagi M, Okamura Y (2006) A voltage sensor-domain protein is a voltage-gated proton channel. Science 312:589–592.

    Article  PubMed  CAS  Google Scholar 

  • Shimozono S, Miyawaki A (2008) Engineering FRET constructs using CFP and YFP. Meth Cell Biol 85:381–393.

    Article  CAS  Google Scholar 

  • Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741.

    Article  PubMed  CAS  Google Scholar 

  • Sjulson L, Miesenböck G (2007) Optical recording of action potentials and other discrete physiological events: a perspective from signal detection theory. Physiology 22:47–55.

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett 579:927–932.

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 8:683–685.

    Article  Google Scholar 

  • Villalba-Galea CA, Sandtner W, et al (2009) Charge movement of the voltage sensitive fluorescent protein. Biophys J 96:L19–21.

    Article  PubMed  CAS  Google Scholar 

  • Zecevic D (1996) Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature 381:322–325.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann D, Kiesel M et al (2008) A combined patch-clamp and electrorotation study of the voltage- and frequency-dependent membrane capacitance caused by structurally dissimilar lipophilic anions. J Membr Biol 22:107–121.

    Google Scholar 

  • Zochowski M, Wachowiak DM et al (2000) Imaging membrane potential with voltage-sensitive dyes. Biol Bull 198:1–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants U24NS057631, DC05259, NS050833, and R21MH064214, and an intramural grant from RIKEN BSI.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jin, L. et al. (2010). Genetically Encoded Protein Sensors of Membrane Potential. In: Canepari, M., Zecevic, D. (eds) Membrane Potential Imaging in the Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6558-5_14

Download citation

Publish with us

Policies and ethics