Skip to main content

Mechanics of Liquid Mixtures

  • Chapter
  • First Online:
  • 5621 Accesses

Abstract

A brief introduction is provided for modeling the response of mixtures under the assumption that the constituents can be modeled as a continuum and that the constituents co-occupy the region of the mixture in a homogenized sense. The constituents of the mixture can undergo chemical reactions and there can be interconversion between the constituents. Balance laws are provided for the constituents of the mixture that allow for the chemical reactions as well as the numerous other interaction mechanisms between the constituents. After developing the general framework, the theory will be used to develop a model for the flow of a mixture of fluids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The word “atop” is inappropriate but provides some basis for understanding the co-occupancy of the constituents. Each of the particles simultaneously co-exist at the same point in the mixture. Of course, there are serious physical problems with such an assumption, but this is far less worrisome from a philosophical stand point of existence than the notion of a “point”, an entity with no dimension! We seem to have no problem whatsoever with coming to grips with this unfathomable concept. Since each particle belonging to a constituent has no dimension allowing them to co-occupy should not lead to any unsurmountable difficulty.

  2. 2.

    Unless a summation symbol is explicitly used, repeated indices do not mean summation over that index.

References

  1. Adkins JE (1963) Nonlinear diffusion I. Diffusion and flow of mixtures of fluids. Philos Trans R Soc Lond A 225:607–633

    Article  MathSciNet  Google Scholar 

  2. Al-Sharif A, Chamniprasart K, Rajagopal KR, Szeri AZ (1993) Lubrication with binary mixtures: Liquid–liquid emulsion. J Tribol 115(1):46–55

    Article  Google Scholar 

  3. Anderson TB, Jackson R (1968) A fluid mechanical description of fluidized beds: Stability of the state of uniform fluidization. Ind Eng Chem Fund 7:12-21

    Article  Google Scholar 

  4. Atkin RJ, Craine RE (1976) Continuum theories of mixtures: Applications. J Inst Math Appl 17:153–207

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnea E, Mizrahi J (1976) On the effective viscosity of liquid–liquid dispersions. Ind Eng Chem Fund 15:120–125

    Article  Google Scholar 

  6. Basset AB (1888) Treatise on hydrodynamics. Deighton Bell, Cambridge

    MATH  Google Scholar 

  7. Batchelor G, Green JT (1972) The determination of the bulk stress in a suspension of spherical particles to order C (2). J Fluid Mech 56:401–427

    Article  MATH  Google Scholar 

  8. Barrer RM (1941) Diffusion in and through solids. Cambridge University Press, London

    Google Scholar 

  9. Bedford A, Drumheller DS (1983) Recent advances: Theories of immiscible and structured mixtures. Int J Eng Sci 21:863–960

    Article  MathSciNet  MATH  Google Scholar 

  10. Brinkman HC (1947) On the permeability of media consisting of closely packed porous particles. Appl Sci Res A 1:81–86

    Article  Google Scholar 

  11. Brinkman HC (1947) The calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res A 1:27–34

    Article  Google Scholar 

  12. Biot MA (1934) Theory of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J Acoust Soc Am 28:168–178 DOI:10.1121/1.1908239

    MathSciNet  Google Scholar 

  13. Biot MA (1934) Theory of elastic waves in a fluid-saturated porous solid, II. High frequency range. J Acoust Soc Am 28:179–191 DOI:10.1121/1.1908241

    MathSciNet  Google Scholar 

  14. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498

    Article  MathSciNet  MATH  Google Scholar 

  15. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571

    Article  Google Scholar 

  16. Brenner H (1958) Dissipation of energy due to solid particles suspended in a viscous liquid. Phys Fluids 1:338–346

    Article  MathSciNet  MATH  Google Scholar 

  17. Brodnyan JG (1959) The concentration dependence of the Newtonian viscosity of prolate ellipsoids. Trans Soc Rheol 3:61–68

    Article  Google Scholar 

  18. Boussinesq J (1913) Vitesse de la chute lente, devenue uniforme, d’une goutte liquide spherique, dans un fluide visqueux de poids specifique moindre. Comp Rend Acad Sci 156:1124–1129

    MATH  Google Scholar 

  19. Bowen RM (1967) Towards a thermodynamics and mechanics of mixtures. Arch Rational Mech Anal 24(5):370–403

    Article  MathSciNet  MATH  Google Scholar 

  20. Bowen RM, Garcia DJ (1970) On the thermodynamics of mixtures with several temperatures. Int J Eng Sci 8:63–83

    Article  Google Scholar 

  21. Bowen RM (1991) Theory of mixtures. In: Continuum physics, Ed Eringer AC, Academic Press, New York, Vol III

    Google Scholar 

  22. Burgers JM, Jeffery GB (1939) Mechanical considerations – Model systems – Phenomenological theories of relaxation and of viscosity, First Report on Viscosity and Plasticity, 2nd edn. Nordemann Publishing Company, Inc., New York Prepared by the committee for the study of viscosity of the academy of sciences at Amsterdam. Proc R Soc Lond A 102:161–179

    Google Scholar 

  23. Craig RE (1970) The motion of a solid in a fluid. Am J Math 20:162–177

    Google Scholar 

  24. Craine RE, Green AE, Naghdi PM (1970) A mixture of viscous elastic materials with different constituent temperatures. Quart J Mech Appl Math 23:171–184

    Article  MATH  Google Scholar 

  25. Darcy H (1856) Les Fontaies Publiques de La Ville de Dijon. Victor Delmont

    Google Scholar 

  26. Einstein A (1906) Eine neune Bestimmung der Molekul-Dimension. Ann Phys 19:289–306

    Article  MATH  Google Scholar 

  27. Einstein A (1911) Eine neune Bestimmung der Molekul-Dimension. Ann Phys 34:591–592

    Article  MATH  Google Scholar 

  28. Fick A (1855) Uber diffusion. Ann Phys 94:59–86

    Article  Google Scholar 

  29. Green AE, Naghdi PM (1969) On basic equations for mixtures. Quart J Mech Appl Math 22:427–438

    Article  MATH  Google Scholar 

  30. Greenhill AG (1898) The motion of a solid in infinite liquid under no forces. Am J Math 20:1–75

    Article  MathSciNet  Google Scholar 

  31. Hadmard JS (1911) Mecanique-mouvement permanent lent une sphere liquids et visqueuse dans un liquide visqueux. Comp Rend Acad Sci 154:1735–1738

    Google Scholar 

  32. Hadmard JS (1912) Hydrodynamique – Sur une question relative aus liquids visqueux. Comp Rend Acad Sci 154:109

    Google Scholar 

  33. Happel M, Brenner H (1973) Low Reynolds number hydrodynamics, Noordhaff, Leyden

    Google Scholar 

  34. Hatschek E (1928) The viscosity of liquids. Bel G and Son, London

    Google Scholar 

  35. Johnson G, Massoudi M, Rajagopal KR (1991) Flow of a fluid infused with solid particles through a pipe. Int J Eng Sci 29(6):649–661

    Article  MathSciNet  MATH  Google Scholar 

  36. Jeffery GB (1922) The Motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A, Containing papers of a mathematical and physical character 102(715):161–179 http://www.jstor.org/stable/94111

  37. Kirchoff G (1869) Uber die benegung eines rotationskorpers in earner fliissigkeit. Crelle 71:237–262

    Google Scholar 

  38. Lamb H (1877) On the free motion of a solid through an infinite mass liquid. Math Soc 8: 273–286

    MATH  Google Scholar 

  39. Malek J, Rajagopal KR (2008) A thermodynamic framework for a mixture of two liquids. Nonlinear Anal R World Appl 9(4):1649–1660

    Article  MathSciNet  MATH  Google Scholar 

  40. Massoudi M (1986) Application of mixture theory to fluidized beds, PhD thesis. University of Pittsburgh

    Google Scholar 

  41. Mills N (1966) Incompressible mixtures of Newtonian fluids. Int J Eng Sci 4:97–112

    Article  MATH  Google Scholar 

  42. Mooney MJ (1954) On an indeterminate integral in Einstein’s theory of the viscosity of a suspension. J Appl Phys 25:406–407

    Article  Google Scholar 

  43. Munaf DR, Lee D, Wineman AS et al (1993) A boundary value problem in groundwater motion analysis – Comparison of predictions based on Darcy’s law and the continuum theory of mixtures. Math Models Methods Appl Sci 3:231

    Article  MathSciNet  MATH  Google Scholar 

  44. Oldroyd JC (1953) The elastic and viscous properties of emulsions and suspensions. Proc R Soc Lond A 218:122–132

    Article  MATH  Google Scholar 

  45. Rajagopal KR, Tao L (1992) Wave propagation in elastic solids infused with fluids. Int J Eng Sci 30:1209–1232

    Article  MathSciNet  MATH  Google Scholar 

  46. Rajagopal KR, Tao L (1995) Mechanics of mixtures, World Scientific, Singapore

    MATH  Google Scholar 

  47. Rajagopal KR (2003) Diffusion through solids undergoing large deformations. Mater Sci Technol 19:1175–1189

    Article  Google Scholar 

  48. Rajagopal KR, Srinivasa AR (2004) On thermomechanical restrictions of continua. Proc R Soc Lond Ser A: Math Phys Eng Sci 460(2042):631-651

    Article  MathSciNet  Google Scholar 

  49. Rajagopal KR, Srinivasa AR (2004) On the thermomechanics of materials that have multiple natural configurations – Part I: Viscoelasticity and classical plasticity. Zeitschrift für Angewandte Mathematik und Physik 55(5):861–893

    Article  MathSciNet  MATH  Google Scholar 

  50. Rajagopal KR, Srinivasa AR (2004) On the thermomechanics of materials that have multiple natural configurations – Part II: Twinning and solid to solid phase transformation. Zeitschrift für Angewandte Mathematik und Physik 55(6):1074–1093

    Article  MathSciNet  MATH  Google Scholar 

  51. Rajagopal KR, Srinivasa AR, A Gibbs potential formulation for obtaining constitutive equations for a class of viscoelastic materials, submitted for publication

    Google Scholar 

  52. Rayleigh JWS (1892) Correlation aspects of the viscosity–temperature relationship of the lubricating oils, PhD thesis, Technische Hogeschool Delft, The Netherlands

    Google Scholar 

  53. Rybczynski W (1911) On the translatory motion of a fluid sphere in a viscous medium. Bull Acad Sci Cracow Ser A:447–459

    Google Scholar 

  54. Saltzer WD, Schulz B (1966) An attempt to treat the viscosity as a transport property of two phase materials. In: Continuum models of discrete systems 4, Eds. Erwin O and Hsieh RKT, North-Holland, Amsterdam

    Google Scholar 

  55. Samohyl I (1987) Thermodynamics of irreversible processes in fluids mixtures, Teubner, Leipzig

    Google Scholar 

  56. Seitz F (1987) The modern theory of solids. Dover Publications, New York

    Google Scholar 

  57. Simha R (1952) A treatment of the viscosity of concentrated suspensions. J Appl Phys 23:1020–1024

    Article  Google Scholar 

  58. Stokes GG (1845) On the effect of the internal friction of fluids on the motions of pendulums. Trans Camb Phil Soc 8:287–305

    Google Scholar 

  59. Tamura M, Kurata M (1952) On the viscosity of binary mixture of liquids. Bull Chem Soc Jpn 25(1):32–38

    Article  Google Scholar 

  60. Taylor GI (1932) The viscosity of fluids containing small drops of another fluid. Proc R Soc Lond A 138:41–48

    Article  Google Scholar 

  61. The Oxford English Dictionary (1981) Oxford University Press, Oxford

    Google Scholar 

  62. Thomson W, Tait PG (1867) Treatise on natural philosophy, Cambridge University Press

    MATH  Google Scholar 

  63. Truesdell C (1957) Sulle basi della thermomeccanica. Rend Lincei 22:33–38

    MathSciNet  MATH  Google Scholar 

  64. Truesdell C (1957) Sulle basi della thermomeccanica. Rend Lincei 22:158–166

    MathSciNet  Google Scholar 

  65. Truesdell C (1991) A first course in rational continuum mechanics, Academic Press, New York

    MATH  Google Scholar 

  66. Truesdell C (1984) Rational thermodynamics, Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  67. Quemada O (1977) Rheology of concentrated disperse systems and minimum energy dissipation principle, I. Viscosity–concentration relationship. Rheol Acta 16:82–94

    Article  Google Scholar 

  68. Williams WO, Sampaio R (1977) Viscosities of liquid mixtures. Z Angew Math Phys 28:607-614

    Article  MATH  Google Scholar 

  69. Ziegler H (1963) Some extremum principles in irreversible thermodynamics. In: Sneddon IN, Hill R, Eds, Progress in solid mechanics vol. 4, North Holland Publishing Company, New York

    Google Scholar 

  70. Ziegler H (1983) An introducton to thermomechanics, North Holland Publishing Company, Amsterdam, 2nd Edn

    Google Scholar 

  71. Ziegler H, Wehrli C (1987) The derivation of constitutive equations from the free energy and the dissipation function. In: Wu TY, Hutchinson JW, Eds, Adv Appl Mech, Academic Press, New York 25:183–238

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumbakonam Ramamani Rajagopal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rajagopal, K.R. (2010). Mechanics of Liquid Mixtures. In: Krishnan, J., Deshpande, A., Kumar, P. (eds) Rheology of Complex Fluids. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6494-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6494-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6493-9

  • Online ISBN: 978-1-4419-6494-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics