Skip to main content

Low-Activity-Rate and Memory Circuits in STSCL

  • Chapter
  • First Online:
Extreme Low-Power Mixed Signal IC Design
  • 1614 Accesses

Abstract

As already discussed in Chap. 3, reduced voltage swing, fast current domain switching speed, and fully differential topology of SCL circuits make them very suitable for high frequency applications. In addition, SCL circuits exhibit very low sensitivity to common-mode noise sources with very low noise injection to substrate or supply lines [1,2]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Badel, “MOS current-mode logic standard cells for high-speed low-noise applications,” PhD Dissertation, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2008

    Google Scholar 

  2. P. Heydari and R. Mohanavelu, “Design of ultrahigh-speed low-voltage CMOS CML buffers and latches,” in IEEE Tranactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 10, pp. 1081–1093, Oct. 2004

    Google Scholar 

  3. A. Tajalli, P. Muller, and Y. Leblebici, “A power-efficient clock and data recovery circuit in 0.18-μm CMOS technology for multi-channel short-haul optical data communication,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2235–2244, Oct. 2007

    Google Scholar 

  4. J. M. Musicer and J. Rabaey, “MOS current mode logic for low power, low noise CORDIC computation in mixed-signal environment,” in Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), pp. 102–107, 2000

    Google Scholar 

  5. M. Pedram and J. Rabaey, Power Aware Design Methodologies, Kluwer, 2002

    Google Scholar 

  6. A. Tajalli, E. Vittoz, Y. Leblebici, and E. J. Brauer, “Ultra low power subthreshold MOS current mode logic circuits using a novel load device concept,” in Proceedings of European Solid-State Ciruits Conference (ESSCIRC), Munich, Germany, pp. 281–284, Sep. 2007

    Google Scholar 

  7. A. Tajalli, E. J. Brauer, Y. Leblebici, and E. Vittoz, “Sub-threshold source-coupled logic circuit design for ultra low power applications,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1699–1710, Jul. 2008

    Google Scholar 

  8. S. -M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits, McGraw-Hill, 2003

    Google Scholar 

  9. B. Nikolic̀, “Design in the power-limited scaling regime,” in IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 71–83, Jan. 2008

    Google Scholar 

  10. B. H. Calhoun, and A. Chandrakasan, “Ultra-dynamic voltage scaling (UDVS) using sub-threshold operation and local voltage dithering,” IEEE J. Solid-State Circuits, vol. 41, pp. 238–245, Jan. 2006

    Google Scholar 

  11. B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “A variation-tolerant sub-200 mV 6-T subthreshold SRAM,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2338–2348, Oct. 2008

    Google Scholar 

  12. B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 680–688, Mar. 2007

    Google Scholar 

  13. N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy,” J. Solid-State Circuits, vol. 43, no. 1, pp. 141–149, Jan. 2008

    Google Scholar 

  14. C. Y. Lu and J. M. Sung, “Reverse short-channel effects on threshold voltage in submicrometer salicide devices,” in IEEE Electron Device Letters, vol. 10, no. 10, pp. 446–448, Oct. 1989

    Google Scholar 

  15. C. Subramanian, “Reverse short channel effect and channel length dependence of boron penetration in PMOSFETs,” in International Electron Device Meeting, pp. 423–426, Dec. 1995

    Google Scholar 

  16. T. -H. Kim, J. Liu, J. Keane, and C. H. Kim, “A 0.2 V, 480 kb subthreshold SRAM with 1 k cells per bitline for ultra-low-voltagre computating,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 518–529, Feb. 2008

    Google Scholar 

  17. J. P. Kulkarni, K. Kim, K. Roy, “A 160 mV robust Schmitt triger based subthreshold SRAM,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2303–2313, Oct. 2007

    Google Scholar 

  18. I. J. Chang, J. -J. Kim, S. P. Park, and K. Roy, “A 32 kb 10 T sub-threshold SRAM array with bit-inteleaved and differential read scheme in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 650–658, Feb. 2009

    Google Scholar 

  19. Y. Wang, et al., “A 1.1 GHz 12 μA/Mb-leakage SRAM design in 65 nm ultra-low-power CMOS technology with integrated leakage reduction for mobile applications,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 172–179, Jan. 2008

    Google Scholar 

  20. A. Tajalli and Y. Leblebici, “Subthreshold SCL for ultra-low-power SRAM and low-activity-rate digital systems,” to apear in European Solid-State Circuits Conference (ESSCIRC), Sep. 2009

    Google Scholar 

  21. C. C. Enz and E. A. Vittoz, Charge-based MOS Transistor Modeling, Wiley, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Tajalli .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tajalli, A., Leblebici, Y. (2010). Low-Activity-Rate and Memory Circuits in STSCL. In: Extreme Low-Power Mixed Signal IC Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6478-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6478-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6477-9

  • Online ISBN: 978-1-4419-6478-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics