Skip to main content

Subthreshold Source-Coupled Logic Performance Analysis

  • Chapter
  • First Online:
Extreme Low-Power Mixed Signal IC Design
  • 1645 Accesses

Abstract

Unlike conventional digital CMOS circuits where there is no static power consumption (neglecting the leakage current), in source-coupled logic (SCL) topology each cell consumes a specifc amount of constant bias current. During each transition, this current is charging or discharging the load capacitance. Hence, more static bias current directly translates into faster transitions at the output nodes of an SCL circuit. When there is no transition at the input of an SCL gate, on the other hand, the static bias current of the gate is only used to preserve the output voltage levels on the desired values. Therefore, there is specifc amount of static power consumption even during static operating conditions which is not used for processing purpose. Regarding that, as the circuit activity rate or duty rate reduces, the power effciency of SCL topology degrades quickly. Under these conditions where the activity rate is low, CMOS circuits can over a better power compromise

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Pedram and J. Rabaey, Power Aware Design Methodologies, Kluwer, 2002

    Google Scholar 

  2. H. Soeleman, K. Roy, and B. C. Paul, “Robust subthreshold logic for ultra-low power operation,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp. 90–99, Feb. 2001

    Google Scholar 

  3. B. Nikolic̀, “Design in the power-limited scaling regime,” in IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 71–83, Jan. 2008

    Google Scholar 

  4. B. H. Calhoun, and A. Chandrakasan, “Ultra-dynamic voltage scaling (UDVS) using sub-threshold operation and local voltage dithering,” IEEE J. Solid-State Circuits, vol. 41, pp. 238–245, Jan. 2006

    Google Scholar 

  5. M. Anis and M. Elmasry, Multi-Threshold CMOS Digital Circuits, Managing Leakage Power, Kluwer, 2003

    Google Scholar 

  6. N. Verma, J. Kwong, and A. Chandrakasan, “Nanometer MOSFET variation in minimum energy subthreshold circuits,” in IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 163–174, Jan. 2008

    Google Scholar 

  7. E. Alon and M. Horowitz, “Integrated regulation for energy-efficient digital circuits,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1795–1807, Aug. 2008

    Google Scholar 

  8. A. Tajalli, E. Vittoz, Y. Leblebici, and E.J. Brauer, “Ultra low power subthreshold current mode logic utilizing a novel PMOS load device,” in IEE Electronics Letters, vol. 43, no. 17, pp. 911–913, Aug. 2007

    Google Scholar 

  9. A. Tajalli, E. Vittoz, Y. Leblebici, and E. J. Brauer, “Ultra-low power subthreshold current-mode logic ulitising PMOS load device concept,” IET Electronics Letters, vol. 43, no. 17, pp. 911–913, Aug. 2007

    Google Scholar 

  10. S.-M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits, McGraw-Hill, 2003

    Google Scholar 

  11. C. C. Enz and E. A. Vittoz, Charge-based MOS Transistor Modeling, Wiley, 2006

    Google Scholar 

  12. P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, Wiely, Fourth Ed., 2000

    Google Scholar 

  13. S. Badel, “MOS current-mode logic standard cells for high-speed low-noise applications,” PhD Dissertation, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2008

    Google Scholar 

  14. M. Mizuno, and et al., “A GHz MOS adaptive pipeline technique using MOS current-mode logic,” IEEE J. Solid-State Circuits, pp. 784–791, vol. 31, no. 6, Jun. 1996

    Google Scholar 

  15. J. M. Musicer and J. Rabaey, “MOS current mode logic for low power, low noise CORDIC computation in mixed-signal environment,” in Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), pp. 102–107, 2000

    Google Scholar 

  16. A. Tajalli, F. K. Gurkaynak, Y. Leblebici, M. Alioto, and E. J. Brauer, “Improving the power–delay product in SCL circuits using source follower output stage,” in Proceedings of International Symposium on Circuits and Systems (ISCAS), pp. 145–148, Seattle, USA, May 2008

    Google Scholar 

  17. A. Tajalli, M. Alioto, and Y. Leblebici, “Power–delay performance improvement of subthreshold SCL circuits,” in IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 56, no. 2, pp. 127–131, Feb. 2009

    Google Scholar 

  18. A. Tajalli, E. J. Brauer, and Y. Leblebici, “Ultra low power 32-bit pipelined adder using subthreshold source-coupled logic with 5fJ/stage PDP,” Elsevier Microelectron. J., vol. 40, no. 6, pp. 973–978, Jun. 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Tajalli .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tajalli, A., Leblebici, Y. (2010). Subthreshold Source-Coupled Logic Performance Analysis. In: Extreme Low-Power Mixed Signal IC Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6478-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6478-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6477-9

  • Online ISBN: 978-1-4419-6478-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics