Subthreshold Source-Coupled Logic

Chapter

Abstract

Power and cost effciency,exibility, performance, and reliability of signal processing in digital domain have promoted designers to gradually replace the traditional analog domain signal processing1 with the signal processing in digital domain. The digital domain signal processing has been proven to be a very powerful tool in many different applications such as in telecommunications, controlling systems,measurement equipments, etc., and hence plays a very important role in modern industrial products.

Keywords

Resis Settling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. M. Wanlass and C. T. San, “Nanowatt logic using field-effect metal-oxide semiconductor triodes,” in IEEE Solid-State Circuit Conference (ISSCC), pp. 32–33, Feb. 1963Google Scholar
  2. 2.
    K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimandi, “Leakage current mechanisems and leakage reduction techniques in deep-submicrometer CMOS circuits,” in Proceeding of the IEEE, vol. 91, no. 2, pp. 305–327, Feb. 2003Google Scholar
  3. 3.
    A. Tajalli and Y. Leblebici, “A slew controlled LVDS output driver circuit in 0.18 μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 538–548, Feb. 2009CrossRefGoogle Scholar
  4. 4.
    D. W. Murphy, “High speed non-saturating switching circuits using a novel coupling technique,” ISSCC Dig. Tech. Papers, pp. 48–49, Feb. 1962Google Scholar
  5. 5.
    J. A. Narud, W. C. Seelbach, and N. Miller, “Relative merits of current mode logic microminiaturization,” in IEEE Solid-State Circuit Conference (ISSCC), pp. 104–105, Feb. 1963Google Scholar
  6. 6.
    M. I. Elmasry and P. M. Thompson, “Analysis of load structure for current-mode logic,” IEEE J. Solid-State Circuits, pp. 72–75, Feb. 1975Google Scholar
  7. 7.
    L. G. Heller, W. R. Griffin, J. W. Davis, and N. G. Thoma, “Cascode voltage swing switch logic: a differential CMOS logic family,” in IEEE Solid-State Circuit Conference (ISSCC), pp. 16–17, Feb. 1984.Google Scholar
  8. 8.
    M. Cooperman, “High speed current mode logic for LSI,” in IEEE Transactions on Circuits and Systems, vol. 27, no. 7, pp. 626–635, Jul. 1980.CrossRefGoogle Scholar
  9. 9.
    M. I. Elmasry, “Nanosecond NMOS VLSI current mode logic,” IEEE J. Solid-State Circuits, vol. 12, no. 2, pp. 411–414, Apr. 1982Google Scholar
  10. 10.
    A. Tajalli, P. Muller, and Y. Leblebici, “A power-efficient clock and data recovery circuit in 0.18-μm CMOS technology for multi-channel short-haul optical data communication,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2235–2244, Oct. 2007Google Scholar
  11. 11.
    A. Tanabe, M. Umetani, I. Fujiwara, T. Ogura, K. Kataoka, M. Okihara, H. Sakuraba, T. Endoh, and F. Masuoka, “0.18-μm CMOS 10-Gb/s multiplexer/ demultiplexer ICs using current mode logic with tolerance to threshold voltage fluctuation,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 988–996, Jun. 2001Google Scholar
  12. 12.
    S. Badel “MOS current-mode logic standard cells for high-speed low-noise applications,” PhD Dissertation, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2008Google Scholar
  13. 13.
    J. M. Musicer and J. Rabaey, “MOS current mode logic for low power, low noise CORDIC computation in mixed-signal environment,” in Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), pp. 102–107, 2000Google Scholar
  14. 14.
    Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 1998Google Scholar
  15. 15.
    T. Sakurai and A. R. Newton, “Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas,” IEEE J. Solid-State Circuits, vol. 25, pp. 584594, Apr. 1990Google Scholar
  16. 16.
    T. Sakurai and A. R. Newton, “A simple MOSFET model for circuit analysis,” in IEEE Transactions on Electron Devices, vol. 38, pp. 887894, Apr. 1991Google Scholar
  17. 17.
    P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, Wiely, Fourth Ed., 2000Google Scholar
  18. 18.
    C. C. Enz and E. A. Vittoz, Charge-based MOS Transistor Modeling, Wiley, 2006Google Scholar
  19. 19.
    C. H. Doan, “Design and implementation of a highly-integrated low-power CMOS frequency synthesizer for an indoor wireless wideband-CDMA direct-conversion receiver,” Master Dissertation, Electrical Engineering and Computer Science Department, University of California at Berkeley, 2000Google Scholar
  20. 20.
    B. Razavi, Design of Integrated Circuits for Optical Communications, Mc-Graw Hills, 2004Google Scholar
  21. 21.
    T. Gabara, and et al., “LVDS I/O buffers with a controlled reference circuit,” in Proceedings of IEEE ASIC Conference, pp. 311–315, Sep. 1997Google Scholar
  22. 22.
    M. Alioto and G. Palumbo, “Power-aware design techniques for nanometer MOS current-mode logic gates: a design framework,” in IEEE Circuits and Systems Magazine, vol. 6, no. 4, pp. 40–59, 2006Google Scholar
  23. 23.
    A. Tajalli, E. J. Brauer, and Y. Leblebici, “Ultra low power 32-bit pipelined adder using subthreshold source-coupled logic with 5fJ/stage PDP,” Elsevier Microelectron. J., vol. 40, no. 6, pp. 973–978, Jun. 2009Google Scholar
  24. 24.
    E. Vittoz, “Weak Inversion for Ultimate Low-Power Logic”, in Low-Power Electronics Design, Editor C. Piguet, CRC, 2005Google Scholar
  25. 25.
    J. R. Hauser, “Noise margin criteria for digital logic circuits,” in IEEE Transactions on Education, vol. 36, Nov. 1993Google Scholar
  26. 26.
    J. Lohstroh, E. Seevinck, and J. De Groot, “Worst-case static noise margin criteria for logic circuits and their mathematical equivalence,” IEEE J. Solid-State Circuits, vol. 18, Dec. 1983Google Scholar
  27. 27.
    A. Tajalli, E. J. Brauer, Y. Leblebici, and E. Vittoz, “Sub-threshold source-coupled logic circuit design for ultra low power applications,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1699–1710, Jul. 2008Google Scholar
  28. 28.
    A. Einstein, “ber die von der molekularkinetischen Theorie der Wrme geforderte Bewegung von in ruhenden Flssigkeiten suspendierten Teilchen,” Annalen der Physik, no 17, pp. 549560, 1905Google Scholar
  29. 29.
    M. Smoluchowski “Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen,” Annalen der Physik, no. 21, pp. 756780, 1906Google Scholar
  30. 30.
    S. Nadarajah and S. Kotz, “Exact distribution of the max/min of two gaussian random variables,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 2, pp. 210–212, Feb. 2008Google Scholar
  31. 31.
    M. Mercaldi “Ultra-low power computational logic systems,” Master Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2007Google Scholar
  32. 32.
    B. Ray “Power efficient computational logic systems,” Master Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2007Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Microelectronic Systems Lab. (LSM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations