Skip to main content

Memory T-Cell Subsets in Parasitic Infections

  • Chapter
Memory T Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 684))

Abstract

Parasitic infections remain a major health problem throughout the world and unlike many viral or bacterial diseases, there are no vaccines to help control parasitic diseases. While several important advances have been made that will contribute to the development of parasite vaccines, such as cloning of dominant parasite antigens and a better understanding of the effector T-cell subsets needed for immunity, fundamental questions remain about how to induce long-term immunologic memory in vaccines. Here we examine a few of the experimental models that have been used to elucidate the nature of the memory T cells that are generated during parasitic infections. Although significant hurdles remain in the development of parasite vaccines, studies with both protozoa and gastrointestinal nematodes suggest that long-term immunity induced by vaccination is a realistic goal for control of parasitic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloom B, Lambert P-H. The Vaccine Book. New York: Academic Press, 2003.

    Google Scholar 

  2. Sallusto F, Lenig D, Forster R et al. Two subsets of memory T-lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401(6754):708–712.

    Article  CAS  PubMed  Google Scholar 

  3. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T-cell subsets: function, generation and maintenance. Annu Rev Immunol 2004; 22:745–763.

    Article  CAS  PubMed  Google Scholar 

  4. Intlekofer AM, Wherry EJ, Reiner SL. Not-so-great expectations: re-assessing the essence of T-cell memory. Immunol Rev 2006; 211:203–213.

    Article  CAS  PubMed  Google Scholar 

  5. Kaech SM, Wherry EJ. Heterogeneity and cell-fate decisions in effector and memory CD8+ T-cell differentiation during viral infection. Immunity 2007; 27(3):393–405.

    Article  CAS  PubMed  Google Scholar 

  6. Chang JT, Palanivel VR, Kinjyo I et al. Asymmetric T-lymphocyte division in the initiation of adaptive immune responses. Science 2007; 315(5819):1687–1691.

    Article  CAS  PubMed  Google Scholar 

  7. Nussenzweig RS, Vanderberg J, Most H et al. Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei. Nature 1967; 216(5111):160–162.

    Article  CAS  PubMed  Google Scholar 

  8. Nussenzweig V, Nussenzweig RS. Rationale for the development of an engineered sporozoite malaria vaccine. Adv Immunol 1989; 45:283–334.

    Article  CAS  PubMed  Google Scholar 

  9. Mosmann TR, Cherwinski H, Bond MW et al. Coffman RL. Two types of murine helper T-cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136(7):2348–2357.

    CAS  PubMed  Google Scholar 

  10. Scott P, Natovitz P, Coffman RL et al. Immunoregulation of cutaneous leishmaniasis. T-cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med 1988; 168(5):1675–1684.

    Article  CAS  PubMed  Google Scholar 

  11. Heinzel FP, Sadick MD, Holaday BJ et al. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T-cell subsets. J Exp Med 1989; 169(1):59–72.

    Article  CAS  PubMed  Google Scholar 

  12. Locksley RM, Scott P. Helper T-cell subsets in mouse leishmaniasis: induction, expansion and effector function. Immunol Today 1991; 12(3):A58–61.

    Article  CAS  PubMed  Google Scholar 

  13. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989; 54 Pt 1:1–13.

    CAS  PubMed  Google Scholar 

  14. Afonso LC, Scharton TM, Vieira Q et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 1994; 263(5144):235–237.

    Article  CAS  PubMed  Google Scholar 

  15. Gurunathan S, Prussin C, Sacks DL et al. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat Med 1998; 4(12):1409–1415.

    Article  CAS  PubMed  Google Scholar 

  16. Gicheru MM, Olobo JO, Anjili CO et al. Vervet monkeys vaccinated with killed Leishmania major parasites and interleukin-12 develop a type 1 immune response but are not protected against challenge infection. Infect Immun 2001; 69(1):245–251.

    Article  CAS  PubMed  Google Scholar 

  17. Zinkernagel RM, Hengartner H. Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T-cells but not by so-called ‘immunological memory’. Immunol Rev 2006; 211:310–319.

    Article  CAS  PubMed  Google Scholar 

  18. Zinkernagel RM. On differences between immunity and immunological memory. Curr Opin Immunol 2002; 14(4):523–536.

    Article  CAS  PubMed  Google Scholar 

  19. Cockburn IA, Zavala F. T-cell memory in malaria. Curr Opin Immunol 2007; 19(4):424–429.

    Article  CAS  PubMed  Google Scholar 

  20. Reyes-Sandoval A, Harty JT, Todryk SM. Viral vector vaccines make memory T-cells against malaria. Immunology 2007; 121(2):158–165.

    Article  CAS  PubMed  Google Scholar 

  21. Hayes KS, Bancroft AJ, Grencis RK. Immune-mediated regulation of chronic intestinal nematode infection. Immunol Rev 2004; 201:75–88.

    Article  CAS  PubMed  Google Scholar 

  22. Belkaid Y, Piccirillo CA, Mendez S et al. CD4+CD25+ regulatory T-cells control Leishmania major persistence and immunity. Nature 2002; 420(6915):502–507.

    Article  CAS  PubMed  Google Scholar 

  23. Uzonna JE, Wei G, Yurkowski D et al. Immune elimination of Leishmania major in mice: implications for immune memory, vaccination and reactivation disease. J Immunol 2001; 167(12):6967–6974.

    CAS  PubMed  Google Scholar 

  24. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002; 2(11):845–858.

    Article  CAS  PubMed  Google Scholar 

  25. Mattner F, Magram J, Ferrante J et al. Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol 1996; 26(7):1553–1559.

    Article  CAS  PubMed  Google Scholar 

  26. Park AY, Hondowicz BD, Scott P. IL-12 is required to maintain a Th1 response during Leishmania major infection. J Immunol 2000; 165(2):896–902.

    CAS  PubMed  Google Scholar 

  27. Kane MM, Mosser DM. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 2001; 166(2):1141–1147.

    CAS  PubMed  Google Scholar 

  28. Coler RN, Reed SG. Second-generation vaccines against leishmaniasis. Trends Parasitol 2005; 21(5):244–249.

    Article  CAS  PubMed  Google Scholar 

  29. Cruz A, Beverley SM. Gene replacement in parasitic protozoa. Nature 1990; 348(6297):171–173.

    Article  CAS  PubMed  Google Scholar 

  30. Titus RG, Gueiros-Filho FJ, de Freitas LA et al. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci USA 1995; 92(22):10267–10271.

    Article  CAS  PubMed  Google Scholar 

  31. Zaph C, Uzonna J, Beverley SM et al. Central memory T-cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med 2004; 10(10):1104–1110.

    Article  CAS  PubMed  Google Scholar 

  32. Pakpour N, Zaph C, Scott P. The central memory CD4(+) T-cell population generated during Leishmania major infection requires IL-12 to produce IFN-gamma. J Immunol 2008; 180(12):8299–8305.

    CAS  PubMed  Google Scholar 

  33. Tarleton RL. Depletion of CD8+ T-cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J Immunol 1990; 144(2):717–724.

    CAS  PubMed  Google Scholar 

  34. Tarleton RL, Koller BH, Latour A et al. Susceptibility of beta 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature 1992; 356(6367):338–340.

    Article  CAS  PubMed  Google Scholar 

  35. Bustamante JM, Bixby LM, Tarleton RL. Drug-induced cure drives conversion to a stable and protective CD8+ T central memory response in chronic Chagas disease. Nat Med 2008; 14(5):542–550.

    Article  CAS  PubMed  Google Scholar 

  36. Zajac AJ, Blattman JN, Murali-Krishna K et al. Viral immune evasion due to persistence of activated T-cells without effector function. J Exp Med 1998; 188(12):2205–2213.

    Article  CAS  PubMed  Google Scholar 

  37. Wherry EJ, Barber DL, Kaech SM et al. Antigen-independent memory CD8 T-cells do not develop during chronic viral infection. Proc Natl Acad Sci USA 2004; 101(45):16004–16009.

    Article  CAS  PubMed  Google Scholar 

  38. Bixby LM, Tarleton RL. Stable CD8+ T-cell memory during persistent Trypanosoma cruzi infection. J Immunol 2008; 181:in press.

    Google Scholar 

  39. Wakelin D. Acquired immunity to Trichuris muris in the albino laboratory mouse. Parasitology 1967; 57(3):515–524.

    Article  CAS  PubMed  Google Scholar 

  40. Zaph C, Rook KA, Goldschmidt M et al. Persistence and function of central and effector memory CD4+ T-cells following infection with a gastrointestinal helminth. J Immunol 2006; 177(1):511–518.

    CAS  PubMed  Google Scholar 

  41. Urban JF Jr, Katona IM, Paul WE et al. Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc Natl Acad Sci USA 1991; 88(13):5513–5517.

    Article  CAS  PubMed  Google Scholar 

  42. Mohrs K, Harris DP, Lund FE et al. Systemic dissemination and persistence of Th2 and type 2 cells in response to infection with a strictly enteric nematode parasite. J Immunol 2005; 175(8):5306–5313.

    CAS  PubMed  Google Scholar 

  43. Anthony RM, Rutitzky LI, Urban JF et al. Protective immune mechanisms in helminth infection. Nat Rev Immunol 2007; 7(12):975–987.

    Article  CAS  PubMed  Google Scholar 

  44. Anthony RM, Urban JF Jr, Alem F et al. Memory T (H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med 2006; 12(8):955–960.

    Article  CAS  PubMed  Google Scholar 

  45. Struik SS, Riley EM. Does malaria suffer from lack of memory? Immunol Rev 2004; 201:268-290.

    Google Scholar 

  46. Stephens R, Langhorne J. Priming of CD4+ T-cells and development of CD4+ T-cell memory; lessons for malaria. Parasite Immunol 2006; 28(1-2):25–30.

    Article  CAS  PubMed  Google Scholar 

  47. Morrot A, Zavala F. Effector and memory CD8+ T-cells as seen in immunity to malaria. Immunol Rev 2004; 201:291–303.

    Article  CAS  PubMed  Google Scholar 

  48. Sano G, Hafalla JC, Morrot A et al. Swift development of protective effector functions in naive CD8(+) T-cells against malaria liver stages. J Exp Med 2001; 194(2):173–180.

    Article  CAS  PubMed  Google Scholar 

  49. Hafalla JC, Rai U, Bernal-Rubio D et al. Efficient development of plasmodium liver stage-specific memory CD8+ T-cells during the course of blood-stage malarial infection. J Infect Dis 2007; 196(12):1827–1835.

    Article  PubMed  Google Scholar 

  50. Good MF, Stanisic D, Xu H et al. The immunological challenge to developing a vaccine to the blood stages of malaria parasites. Immunol Rev 2004; 201:254-267.

    Google Scholar 

  51. Good MF, Xu H, Wykes M et al. Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research. Annu Rev Immunol 2005; 23:69–99.

    Article  CAS  PubMed  Google Scholar 

  52. Langhorne J, Ndungu FM, Sponaas AM et al. Immunity to malaria: more questions than answers. Nat Immunol 2008; 9(7):725–732.

    Article  CAS  PubMed  Google Scholar 

  53. Holder AA, Guevara Patino JA, Uthaipibull C et al. Merozoite surface protein 1, immune evasion and vaccines against asexual blood stage malaria. Parassitologia 1999; 41(1–3):409–414.

    CAS  PubMed  Google Scholar 

  54. Stephens R, Albano FR, Quin S et al. Malaria-specific transgenic CD4(+) s protect immunodeficient mice from lethal infection and demonstrate requirement for a protective threshold of antibody production for parasite clearance. Blood 2005; 106(5):1676–1684.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Colpitts, S., Scott, P. (2010). Memory T-Cell Subsets in Parasitic Infections. In: Zanetti, M., Schoenberger, S.P. (eds) Memory T Cells. Advances in Experimental Medicine and Biology, vol 684. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6451-9_11

Download citation

Publish with us

Policies and ethics