Skip to main content

Hereditary Photodermatoses

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 685))

Abstract

Photodermatoses are defined as the abnormal reactions of the skin to photons, usually those of wavelengths found in sunlight. These reactions can be caused by a wide variety of reasons, including defects in repair of light-induced DNA lesions, the interaction of certain chemicals or medications with sunlight to produce toxic mediators and photo-induced immune reactions. In this chapter we will describe photodermatoses that are associated with hereditary conditions. These can be subdivided into several groups: dermatoses caused by abnormal metabolic conditions, idiopathic photodermatoses, defects in cancer suppressor genes not directly involved in DNA repair but that predispose to photodistributed tumors and photosensitivity due to abnormalities in DNA repair pathways. Special emphasis will be placed on the relatively recently described UV-sensitive sy

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kvam E, Tyrrell RM. Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 1997; 18(12):2379.

    Article  CAS  PubMed  Google Scholar 

  2. Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 2005; 571(1–2):3.

    CAS  PubMed  Google Scholar 

  3. Kim KJ, Chakrabarty I, Li GZ et al. Modulation of base excision repair alters cellular sensitivity to UVA1 but not to UVB1. Photochem Photobiol 2002; 75(5):507.

    Article  CAS  PubMed  Google Scholar 

  4. Kunisada M, Sakumi K, Tominaga Y et al. 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res 2005; 65(14):6006.

    Article  CAS  PubMed  Google Scholar 

  5. Vens C, Dahmen-Mooren E, Verwijs-Janssen M et al. The role of DNA polymerase beta in determining sensitivity to ionizing radiation in human tumor cells. Nucleic Acids Res 2002; 30(13):2995.

    Article  CAS  PubMed  Google Scholar 

  6. D’Errico M, Parlanti E, Teson M et al. New functions of XPC in the protection of human skin cells from oxidative damage. EMBO J 2006; 25(18):4305.

    Article  PubMed  CAS  Google Scholar 

  7. Rünger T, Epe B, Moller K. Repair of ultraviolet B and singlet oxygen-induced DNA damage in xeroderma pigmentosum cells. J Invest Dermatol 1995; 104(1):68.

    Article  PubMed  Google Scholar 

  8. Dumaz N, Drougard C, Sarasin A et al. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proc Natl Acad Sci USA 1993; 90(22):10529.

    Article  CAS  PubMed  Google Scholar 

  9. Azmanov DN, Kowalczuk S, Rodgers H et al. Further evidence for allelic heterogeneity in Hartnup disorder. Human Mut 2008; 29(10):1217.

    Article  CAS  Google Scholar 

  10. Smith DW, Lemli L, Opitz JM. A newly recognized syndrome of multiple congenital anomalies. J Pediatr 1964; 64:210.

    Article  CAS  PubMed  Google Scholar 

  11. Yu H, Patel SB. Recent insights into the Smith-Lemli-Opitz syndrome. Clin Genet 2005; 68(5):383.

    Article  CAS  PubMed  Google Scholar 

  12. Chignell CF, Kukielczak BM, Sik RH et al. Ultraviolet A sensitivity in Smith-Lemli-Opitz syndrome: Possible involvement of cholesta-5,7,9(11)-trien-3 beta-ol. Free Radic Biol Med 2006; 41(2):339.

    Article  CAS  PubMed  Google Scholar 

  13. Kindler T. Congenital poikiloderma with traumatic bulla formation and progressive cutaneous atrophy. Br J Dermatol 1954; 66(3):104.

    Article  CAS  PubMed  Google Scholar 

  14. Yasukawa K, Sato-Matsumura KC, McMillan J et al. Exclusion of COL7A1 mutation in Kindler syndrome. J Am Acad Dermatol 2002; 46(3):447.

    Article  PubMed  Google Scholar 

  15. Siegel DH, Ashton GH, Penagos HG et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am J Hum Genet 2003; 73(1):174.

    Article  CAS  PubMed  Google Scholar 

  16. Jobard F, Bouadjar B, Caux F et al. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum Mol Genet 2003; 12(8):925.

    Article  CAS  PubMed  Google Scholar 

  17. White SJ, McLean WH. Kindler surprise: mutations in a novel actin-associated protein cause Kindler syndrome. J Dermatol Sci 2005; 38(3):169.

    Article  CAS  PubMed  Google Scholar 

  18. Schnell AH, Elston RC, Hull PR et al. Major gene segregation of actinic prurigo among North American Indians in Saskatchewan. Am J Med Genet 2000; 92(3):212.

    Article  CAS  PubMed  Google Scholar 

  19. Grabczynska SA, McGregor JM, Kondeatis E et al. Actinic prurigo and polymorphic light eruption: common pathogenesis and the importance of HLA-DR4/DRB1*0407. Br J Dermatol 1999; 140(2):232.

    Article  CAS  PubMed  Google Scholar 

  20. Morison WL, Stern RS. Polymorphous light eruption: a common reaction uncommonly recognized. Acta Derm Venereol 1982; 62(3):237.

    CAS  PubMed  Google Scholar 

  21. Horkay I, Emri G, Varga V et al. Environmental dermatology in childhood: photosensitivity. Pediatric Health 2008; 2(6):749.

    Google Scholar 

  22. Botto NC, Warshaw EM. Solar urticaria. J Am Acad Dermatol 2008; 59(6):909.

    Article  PubMed  Google Scholar 

  23. Hawk JL. Chronic actinic dermatitis. Photodermatol Photoimmunol Photomed 2004; 20(6):312.

    Article  CAS  PubMed  Google Scholar 

  24. Gupta G, Mohamed M, Kemmett D. Familial hydroa vacciniforme. Br J Dermatol 1999; 140(1):124.

    Article  CAS  PubMed  Google Scholar 

  25. Shafei-Benaissa E, Savage JR, Babin P et al. The naevoid basal-cell carcinoma syndrome (Gorlin syndrome) is a chromosomal instability syndrome. Mutat Res 1998; 397(2):287.

    CAS  PubMed  Google Scholar 

  26. Bodak N, Queille S, Avril MF et al. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc Natl Acad Sci USA 1999; 96(9):5117.

    Article  CAS  PubMed  Google Scholar 

  27. Giglia G, Dumaz N, Drougard C et al. p53 mutations in skin and internal tumors of xeroderma pigmentosum patients belonging to the complementation group C. Cancer Res 1998; 58(19):4402.

    CAS  PubMed  Google Scholar 

  28. Tsao H, Niendorf K. Genetic testing in hereditary melanoma. J Am Acad Dermatol 2004; 51(5):803.

    Article  PubMed  Google Scholar 

  29. de Snoo F, Grui N. Familial melanoma. In: Huret J-L, ed. Atlas Genet Cytogenet Oncol Haematol Poitiers 2005.

    Google Scholar 

  30. Brosh RM, Jr, Bohr VA. Human premature aging, DNA repair and RecQ helicases. Nucleic Acids Res 2007; 35(22):7527.

    Article  CAS  PubMed  Google Scholar 

  31. Hsu S, George S. Rothmund-Thompson syndrome. In: emedicine 2007.

    Google Scholar 

  32. Siitonen HA, Kopra O, Kaariainen H et al. Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet 2003; 12(21):2837.

    Article  CAS  PubMed  Google Scholar 

  33. Ahmad S, ed. Molecular Mechanisms of Ataxia Telangiectasia. Austin: Landes Bioscience, 2009.

    Google Scholar 

  34. Ahmad S, Hanaoka F, eds. Molecular Mechanisms of Xeroderma Pigmentosum. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2008.

    Google Scholar 

  35. Ahmad S, ed. Molecular Mechanisms of Cockayne Syndrome. Austin: Landes Bioscience, 2009.

    Google Scholar 

  36. Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum. Cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch Dermatol 1987; 123(2):241.

    Article  CAS  PubMed  Google Scholar 

  37. Greenhaw GA, Hebert A, Duke-Woodside ME et al. Xeroderma pigmentosum and Cockayne syndrome: overlapping clinical and biochemical phenotypes. Am J Hum Genet 1992; 50(4):677.

    CAS  PubMed  Google Scholar 

  38. Colella S, Nardo T, Botta E et al. Identical mutations in the CSB gene associated with either Cockayne syndrome or the DeSanctis-cacchione variant of xeroderma pigmentosum. Hum Mol Genet 2000; 9(8):1171.

    Article  CAS  PubMed  Google Scholar 

  39. Itoh T, Cleaver JE, Yamaizumi M. Cockayne syndrome complementation group B associated with xeroderma pigmentosum phenotype. Hum Genet 1996; 97(2):176.

    Article  CAS  PubMed  Google Scholar 

  40. Hashimoto S, Egawa K, Ihn H et al. A new disorder in UV-induced skin cancer with defective DNA repair distinct from xeroderma pigmentosum or Cockayne syndrome. J Invest Dermatol 2008; 128(3):694.

    CAS  PubMed  Google Scholar 

  41. Itoh T, Fujiwara Y, Ono T et al. UVs syndrome, a new general category of photosensitive disorder with defective DNA repair, is distinct from xeroderma pigmentosum variant and rodent complementation group I. Am J Hum Genet 1995; 56(6):1267.

    CAS  PubMed  Google Scholar 

  42. Spivak G. UV-sensitive syndrome. Mutat Res 2005; 577:162.

    Google Scholar 

  43. Spivak G, Hanawalt PC. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair (Amst) 2006; 5(1):13.

    Article  CAS  Google Scholar 

  44. Nardo T, Oneda R, Spivak G et al. A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci USA 2009.

    Google Scholar 

  45. Itoh T, Linn S, Ono T et al. Reinvestigation of the classification of five cell strains of xeroderma pigmentosum group E with reclassification of three of them. J Invest Dermat 2000; 114(5):1022.

    Article  CAS  Google Scholar 

  46. Horibata K, Iwamoto Y, Kuraoka I et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc Natl Acad Sci USA 2004; 101:15410.

    Article  CAS  PubMed  Google Scholar 

  47. Spivak G. The many faces of Cockayne syndrome.(comment). Proc Natl Acad Sci USA 2004; 101(43):15273.

    Article  CAS  PubMed  Google Scholar 

  48. Newman JC, Bailey AD, Fan HY et al. An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet 2008; 4(3):e1000031.

    Article  PubMed  CAS  Google Scholar 

  49. Laugel V, Dalloz C, Stary A et al. Deletion of 5′ sequences of the CSB gene provides insight into the pathophysiology of Cockayne syndrome. Eur J Hum Genet 2008; 16(3):320.

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka K, Itoh S. Transcription-coupled repair and its defect in cockayne syndrome. In: Ahmad S, ed. Molecular Mechanisms of Cockayne Syndrome. Austin: Landes. in press, 2009.

    Google Scholar 

  51. Hashimoto S, Suga T, Kudo E et al. Adult-onset neurological degeneration in a patient with Cockayne syndrome and a null mutation in the CSB gene. J Invest Dermatol 2008; 128(6):1597.

    Article  CAS  PubMed  Google Scholar 

  52. Colella S, Nardo T, Botta E et al. Identical mutations in the CSB gene associated with either Cockayne syndrome or the DeSanctis-cacchione variant of xeroderma pigmentosum. Hum Mol Genet 2000; 9(8):1171.

    Article  CAS  PubMed  Google Scholar 

  53. Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9(12):958.

    Article  CAS  PubMed  Google Scholar 

  54. Anindya R, Aygun O, Svejstrup JQ. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Molecular Cell 2007; 28(3):386.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Spivak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Oh, D.H., Spivak, G. (2010). Hereditary Photodermatoses. In: Ahmad, S.I. (eds) Diseases of DNA Repair. Advances in Experimental Medicine and Biology, vol 685. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6448-9_9

Download citation

Publish with us

Policies and ethics