Skip to main content

Tuberous Sclerosis Complex and DNA Repair

  • Chapter
Diseases of DNA Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 685))

Abstract

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder in humans characterized by the development of hamartomas in several organs, including renal angiomyolipomas, cardiac rhabdomyomas and subependymal giant cell astrocytomas. TSC causes disabling neurologic disorders, including epilepsy, mental retardation and autism. Brain lesions, including subependymal and subcortical hamartomas, have also been reported in TSC patients. TSC is associated with hamartomas and renal cell carcinoma (RCC) as well as sporadic tumors in TSC patient. Renal angiomyolipomas associated with TSC tend to be larger, bilateral, multifocal and present at a younger age compared with sporadic forms. Tuberous sclerosis complex of 2 genes, TSC2 encodes a protein called tuberin that normally exists in an active state and forms a heterodimeric complex with hamartin, the protein encoded by the TSC1. Deficiency of TSC2 in Eker rat is associated with the development of tumors in several organs including kidney. The majority of renal cell tumors observed in the Eker rat originates from renal proximal tubules and are histologically similar to renal cell carcinoma in humans. On the other hand, mutations in DNA repair enzyme 8-oxoG-DNA glycosylase (OGG1) are associated with cancer. OGG1 gene is found somatically mutated in some cancer cells and is highly polymorphic among human cancers. Moreover, knockout mice in OGG1 developed spontaneously adenoma and carcinoma. We recently show that the constitutive expression of OGG1 in heterozygous (TSC2+/−) Eker rat and in angiomyolipomas kidney tissue from human is 2-3fold less than in kidney from wild-type rats and control human subjects. In addition, we show that loss of TSC2 in kidney tumor of Eker rat is associated with loss of OGG1 and accumulation significant levels of oxidative DNA damage 8-oxo-deoxyguanine suggesting that TSC2 and OGG1 play a major role in renal tumorig

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourneville DM. Sclerose tubereuse des circonvolutions cerebrales: idiotie et epilepsie hemiplegique. Arch Neurol (Paris) 1880; 1:81–91.

    Google Scholar 

  2. Kandt RS, Haines JL, Smith M et al. Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet 1992; 2:37–41.

    Article  CAS  PubMed  Google Scholar 

  3. Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993; 75:1305–1315.

    Article  Google Scholar 

  4. Van Slegtenhorst M, de Hoogt R, Hermans C et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277:805–808.

    Article  PubMed  Google Scholar 

  5. Carsillo T, Astrinidis A, Henske EP. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA 2000; 97:6085–6090.

    Article  CAS  PubMed  Google Scholar 

  6. Stillwell TJ, Gomez MR, Kelalis PP. Renal lesions in tuberous sclerosis. J Urol 1987; 138:477–481.

    CAS  PubMed  Google Scholar 

  7. Al-Saleem T, Wessner LL, Scheithauer BW et al. Malignant tumors of the kidney, brain and soft tissues in children and young adults with the tuberous sclerosis complex. Cancer 1998; 83:2208–2216.

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro RA, Skinner DG, Stanley P et al. Renal tumors associated with tuberous sclerosis. the case for aggressive surgical management. J Urol 1984; 132:1170–1174.

    CAS  PubMed  Google Scholar 

  9. Onda H, Lueck A, Marks PW et al. Tsc2(+/−) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest 1999; 104:687–695.

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi T, Minowa O, Kuno J et al. Renal carcinogenesis, hepatic hemangiomatosis and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 1999; 59:1206–1211.

    CAS  PubMed  Google Scholar 

  11. Hino O, Mitani H, Katsuyama H et al. A novel cancer predisposition syndrome in the Eker rat model. Cancer Lett 1994; 83:117–121.

    Article  CAS  PubMed  Google Scholar 

  12. Hino O, Klein-Szanto AJ, Freed JJ et al. Spontaneous and radiation-induced renal tumors in the Eker rat model of dominantly inherited cancer. Proc Natl Acad Sci USA 1993; 90:327–331.

    Article  CAS  PubMed  Google Scholar 

  13. Rennebeck G, Kleymenova EV, Anderson R et al. Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryoni c lethality characterized by disrupted neuroepithelial growth and development. Proc Natl Acad Sci USA 1998; 95:15629–15634.

    Article  CAS  PubMed  Google Scholar 

  14. Everitt JI, Goldsworthy TL, Wolf DC et al. Hereditary renal cell carcinoma in the Eker rat: A rodent familial cancer syndrome. J Urol 1992; 148:1932–1936.

    CAS  PubMed  Google Scholar 

  15. Eker R, Mossige J, Johannessen JV et al. Hereditary renal adenomas and adenocarcinoma s in rats. Diagn Histopathol 1981; 4:99–110.

    CAS  PubMed  Google Scholar 

  16. Everitt JI, Goldsworthy TL, Wolf DC et al. Hereditary renal cell carcinoma in the Eker rat: A unique animal model for the study of cancer susceptibility. Toxicol Lett 1995; 82–83:621–625.

    Article  PubMed  Google Scholar 

  17. Washecka R, Hanna M. Malignant renal tumors in tuberous sclerosis. Urology 1991; 37:340–343.

    Article  CAS  PubMed  Google Scholar 

  18. Robertson FM, Cendron M, Klauber GT et al. Renal cell carcinoma in association with tuberous sclerosis in children. J Pediatr Surg 1996; 31:729–730.

    Article  CAS  PubMed  Google Scholar 

  19. Bjornsson J, Short MP, Kwiatkowski DJ et al. Tuberous sclerosis-associated renal cell carcinoma: clinical, pathological and genetic features. Am J Pathol 1996; 149:1201–1208.

    CAS  PubMed  Google Scholar 

  20. Plank TL, Logginidou H, Klein-Szanto A et al. The expression of hamartin, the product of the TSC1 gene, in normal human tissues and in TSC1-and TSC2-linked angiomyolipomas. Mod Pathol 1999; 12:539–545.

    CAS  PubMed  Google Scholar 

  21. Habib SL. Insight into mechanism of oxidative DNA damage in angiomyolipomas from TSC patients. Mol Cancer 2009; 8:1–10.

    Article  Google Scholar 

  22. Johnson MW, Kerfoot C, Bushnell T et al. Hamartin and tuberin expression in human tissues. Mod Pathol 2001; 14:202–210.

    Article  CAS  PubMed  Google Scholar 

  23. Lou D, Griffith N, Noonan DJ. The tuberous sclerosis 2 gene product can localize to nuclei in a phosphorylation-dependentmanner. Mol Cell Biol Res Commun 2001; 4:374–380.

    Article  CAS  PubMed  Google Scholar 

  24. Lamb RF, Roy C, Diefenbach TJ et al. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol 2000; 2:281–287.

    Article  CAS  PubMed  Google Scholar 

  25. Inoki K, Li Y, Xu T et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17:1829–1834.

    Article  CAS  PubMed  Google Scholar 

  26. Wienecke R, Konig A, DeClue JE. Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J Biol Chem 1995; 270:16409–16414.

    Article  CAS  PubMed  Google Scholar 

  27. Jansen FE, Notenboom RG, Nellist M et al. Differential localization of hamartin and tuberin and increased S6 phosphorylation in a tuber. Neurology 2004; 63:1293–1295.

    CAS  PubMed  Google Scholar 

  28. Nellist M, van Slegtenhorst MA, Goedbloed M et al. Characterization of the cytosolic tuberin-hamartin complex. Tuberin is a cytosolic chaperone for hamartin. J Biol Chem 1999; 274:35647–35652.

    Article  CAS  PubMed  Google Scholar 

  29. van Slegtenhorst M, Nellist M, Nagelkerken B et al. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 1998; 7:1053–7.

    Article  PubMed  Google Scholar 

  30. Maheshwar MM, Cheadle JP, Jones AC et al. The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum Mol Genet 1997; 6:1991–1996.

    Article  CAS  PubMed  Google Scholar 

  31. Nellist M, Verhaaf B, Goedbloed MA et al. TSC2 missense mutations inhibit tuberin phosphorylation and prevent formation of the tuberin-hamartin complex. Hum Mol Genet 2001; 10:2889–2898.

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Inoki K, Guan KL. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol Cell Biol 2004; 24:7965–7975.

    Article  CAS  PubMed  Google Scholar 

  33. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68:820–823.

    Article  PubMed  Google Scholar 

  34. Manning BD, Tee AR, Logsdon MN et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002; 10:151–162.

    Article  CAS  PubMed  Google Scholar 

  35. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 2008; 412:179–190.

    Article  CAS  PubMed  Google Scholar 

  36. Inoki K, Li Y, Zhu T et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4:648–657.

    Article  CAS  PubMed  Google Scholar 

  37. Cai SL, Tee AR, Short JD et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 2006; 173:279–289.

    Article  CAS  PubMed  Google Scholar 

  38. Xiao GH, Shoarinejad F, Jin F et al. The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J Biol Chem 1997; 272:6097–6100.

    Article  CAS  PubMed  Google Scholar 

  39. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115:577–590.

    Article  CAS  PubMed  Google Scholar 

  40. Ma L, Chen Z, Erdjument-Bromage H et al. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121:179–193.

    Article  CAS  PubMed  Google Scholar 

  41. Ma L, Teruya-Feldstein J, Bonner P et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 2007; 67:7106–7112.

    Article  CAS  PubMed  Google Scholar 

  42. Woods A, Johnstone SR, Dickerson K et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003; 13:2004–2008.

    Article  CAS  PubMed  Google Scholar 

  43. Shaw RJ, Kosmatka M, Bardeesy N et al. Inaugural article: The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101:3329–3335.

    Article  CAS  PubMed  Google Scholar 

  44. Inoki K, Li Y, Xu T et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes & Dev 2003; 17:1829–1834.

    Article  CAS  Google Scholar 

  45. Hawley SA, Boudeau J, Reid JL et al. Complexes between the LKB1 tumor suppressor, STRAD/and MO25/are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2: 28. growth by directly phosphorylating Tsc2. Nat Cell Biol 2003; 4:658–665.

    Google Scholar 

  46. Corradetti MN, Inoki K, Bardeesy N et al. Regulation of the TSC pathway by LKB1: Evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 2004; 18:1533–1538.

    Article  CAS  PubMed  Google Scholar 

  47. Sofer A, Lei K, Johannessen CM et al. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 2005; 25:5834–5845.

    Article  CAS  PubMed  Google Scholar 

  48. Hara K, Maruki Y, Long X et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177–189.

    Article  CAS  PubMed  Google Scholar 

  49. Oshiro N, Yoshino K, Hidayat S et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 2004; 9:359–366.

    Article  CAS  PubMed  Google Scholar 

  50. Kim DH, Sarbassov DD, Ali SM et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163–175.

    Article  CAS  PubMed  Google Scholar 

  51. Cunningham JT, Rodgers JT, Arlow DH et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007; 450:736–740.

    Article  CAS  PubMed  Google Scholar 

  52. Jacinto E, Loewith R, Schmidt A et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6:1122–1128.

    Article  CAS  PubMed  Google Scholar 

  53. Robb VA, Astrinidis A, Henske EP. Frequent hyperphosphorylation of ribosomal protein S6 in lymphangioleiomyomatosis-associated angiomyolipomas. Mod Pathol 2006; 19:839–840.

    Article  CAS  PubMed  Google Scholar 

  54. Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991; 51:3075–3079.

    CAS  PubMed  Google Scholar 

  55. Chevillard S, Radicella JP, Levalois C et al. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene 1998; 16:3083–3086.

    Article  CAS  PubMed  Google Scholar 

  56. Sakumi K, Tominaga Y, Furuichi M et al. Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res 2003; 63:902–905.

    CAS  PubMed  Google Scholar 

  57. Kunisada M, Sakumi K, Tominaga Y et al. 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res 2005; 65:6006–6010.

    Article  CAS  PubMed  Google Scholar 

  58. Liao J, Seril DN, Lu GG et al. Increased susceptibility of chronic ulcerative colitis-induced carcinoma development in DNA repair enzyme Ogg1 deficient mice. Mol Carcinogenesis 2008; 47:638–646.

    Article  CAS  Google Scholar 

  59. Lubinski J, Hadaczek P, Podolski J et al. Common regions of deletions in chromosome regions 3p12 and 3p14.2 in primary clear cell renal carcinomas. Cancer Res 1994; 54:3710–3.

    CAS  PubMed  Google Scholar 

  60. Shinmura K, Kohno T, Kasai H et al. Infrequent mutations of the hOGG1 gene, that is involved in the excision of 8-hydroxyguanine in damaged DNA, in human gastric cancer. Jpn J Cancer Res 1998; 89:825–828.

    CAS  PubMed  Google Scholar 

  61. Sugimura H, Kohno T, Wakai K et al. hOGG1 Ser326Cys polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1999; 8:669–674.

    CAS  PubMed  Google Scholar 

  62. Audebert M, Chevillard S, Levalois C et al. Alterations of DNA repair gene OGG1 in human clear cell carcinomas of the kidney. Cancer Res 2000; 60:4740–4744.

    CAS  PubMed  Google Scholar 

  63. Habib SL, Daniel E, Abboud HE et al. Genetic polymorphisms in OGG1 and their association with angiomyolipoma, a benign kidney tumor in patients with tuberous sclerosis. Cancer Biol Ther 2008; 7:23–27.

    Article  CAS  PubMed  Google Scholar 

  64. Farinati F, Cardin R, Bortolami M et al. Oxidative DNA damage in gastric cancer: CagA status and OGG1 gene polymorphism. Int J Cancer 2008; 123:51–55.

    Article  CAS  PubMed  Google Scholar 

  65. Jiao X, Huang J, Wu S et al. hOGG1 Ser326Cys polymorphism and susceptibility to gallbladder cancer in a Chinese population. Int J Cancer 2007; 121:501–505.

    Article  CAS  PubMed  Google Scholar 

  66. Xing DY, Tan W, Song N et al. Ser326Cys polymorphism in hOGG1 gene and risk of esophageal cancer in a Chinese population. Int J Cancer 2001; 95:140–143.

    Article  CAS  PubMed  Google Scholar 

  67. Elahi A, Zheng Z, Park J et al. The human OGG1 DNA repair enzyme and its association with orolaryngeal cancer risk. Carcinogenesis 2002; 23:1229–12s34.

    Article  CAS  PubMed  Google Scholar 

  68. Habib SL, Phan MN, Patel SK et al. Reduced constitutive 8-oxoguanine-DNA glycocylase expression and impaired induction following oxidative DNA damage in the tuberin deficient Eker rat. Carcinogenesis 2003; 24:573–582.

    Article  CAS  PubMed  Google Scholar 

  69. Habib SL, Simone S, Barnes JJ et al. Tuberin haploinsufficiency is associated with the loss of OGG1 in rat kidney tumors. Mol Cancer 2008; 7:10–14.

    Article  PubMed  Google Scholar 

  70. Habib SL, Riley DJ, Bhandari B et al. Tuberin regulates the DNA repair enzyme OGG1. Am J Physiol Renal Physiol 2008; 294:F281–F290.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Habib, S.L. (2010). Tuberous Sclerosis Complex and DNA Repair. In: Ahmad, S.I. (eds) Diseases of DNA Repair. Advances in Experimental Medicine and Biology, vol 685. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6448-9_8

Download citation

Publish with us

Policies and ethics