Skip to main content

Familial Cutaneous Melanoma

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 685))

Abstract

Approximately 5–10% of all cutaneous melanomas occur in families with hereditary melanoma predisposition. Worldwide, approximately 20–40% of kindreds with familial melanoma harbor germline mutations in the CDKN2A gene, located on chromosome 9p21, which encodes two different proteins, p16INK4 and p14ARF, both involved in regulation of cell cycle progression and induction of senescence. In different populations several recurring CDKN2A founder mutations have been described. The risk of melanoma in CDKN2A mutations carriers varies between populations and is higher in regions with high sun exposure and high incidence of melanoma in the general population. Some CDKN2A mutations have been associated not only with melanoma but also with increased risk of other malignancies—most notably pancreatic carcinoma. A much smaller number of families have germline mutations in the CDK4 gene on chromosome 12q14, encoding a cyclin dependent kinase which normally interacts with p16INK4A. The management of families with hereditary melanoma is dis

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal A, Siegel R, Ward E et al. Cancer statistics, 7. CA Cancer J Clin 2007; 57:43–66.

    Article  PubMed  Google Scholar 

  2. Gandini S, Sera F, Cattaruzza MS et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 2005; 41:45–60.

    Article  PubMed  Google Scholar 

  3. Gandini S, Sera F, Cattaruzza MS et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer 2005; 41:28–44.

    Article  PubMed  Google Scholar 

  4. Gandini S, Sera F, Cattaruzza MS et al. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer 2005; 41:2040–2059.

    Article  PubMed  Google Scholar 

  5. Platz A, Ringborg U, Hansson J. Hereditary cutaneous melanoma. Semin Cancer Biol 2000; 10:319–326.

    Article  CAS  PubMed  Google Scholar 

  6. Florell SR, Boucher KM, Garibotti G et al. Population-based analysis of prognostic factors and survival in familial melanoma. J Clin Oncol 2005; 23:7168–7177.

    Article  PubMed  Google Scholar 

  7. Ford D, Bliss JM, Swerdlow AJ et al. Risk of cutaneous melanoma associated with a family history of the disease. The International Melanoma Analysis Group (IMAGE). Int J Cancer 1995; 62:377–381.

    Article  CAS  PubMed  Google Scholar 

  8. Greene MH, Clark WH Jr, Tucker MA et al. Precursor naevi in cutaneous malignant melanoma: a proposed nomenclature. Lancet 1980; 2:1024.

    Article  CAS  PubMed  Google Scholar 

  9. Begg CB, Hummer A, Mujumdar U et al. Familial aggregation of melanoma risks in a large population-based sample of melanoma cases. Cancer Causes Control 2004; 15:957–965.

    PubMed  Google Scholar 

  10. Norris W. Case of fungoid disease. Edinburgh Med Surg J 1820; 16:562–565.

    Google Scholar 

  11. Clark WH Jr, Reimer RR, Greene M et al. Origin of familial malignant melanomas from heritable melanocytic lesions. ‘The B-K mole syndrome’. Arch Dermatol 1978; 114:732–738.

    Article  PubMed  Google Scholar 

  12. Lynch HT, Frichot BC 3rd, Lynch JF. Familial atypical multiple mole-melanoma syndrome. J Med Genet 1978; 15:352–356.

    Article  CAS  PubMed  Google Scholar 

  13. Newton Bishop JA, Bataille V, Pinney E et al. Family studies in melanoma: identification of the atypical mole syndrome (AMS) phenotype. Melanoma Res 1994; 4(4):199–206.

    Article  CAS  PubMed  Google Scholar 

  14. Friedman RJ, Rigel DS, Kopf AW. Early detection of malignant melanoma: the role of physician examination and self-examination of the skin. CA Cancer J Clin 1985; 35(3):130–151.

    Article  CAS  PubMed  Google Scholar 

  15. Hofmann-Wellenhof R, Blum A, Wolf IH et al. Dermoscopic classification of Clark’s nevi (atypical melanocytic nevi). Clin Dermatol 2002; 20(3):255–258.

    Article  PubMed  Google Scholar 

  16. Roesch A, Burgdorf W, Stolz W et al. Dermatoscopy of “dysplastic nevi”: a beacon in diagnostic darkness. Eur J Dermatol 2006; 16(5):479–493.

    PubMed  Google Scholar 

  17. Goldstein AM, Fraser MC, Clark WH Jr et al. Age at diagnosis and transmission of invasive melanoma in 23 families with cutaneous malignant melanoma/dysplastic nevi. J Natl Cancer Inst 1994; 86(18):1385–1390.

    Article  CAS  PubMed  Google Scholar 

  18. Greene MH, Clark WH Jr, Tucker MA et al. High risk of malignant melanoma in melanoma-prone families with dysplastic nevi. Ann Intern Med 1985; 102(4):458–465.

    CAS  PubMed  Google Scholar 

  19. Marks R, Dorevitch AP, Mason G. Do all melanomas come from “moles”? A study of the histological association between melanocytic naevi and melanoma. Australas J Dermatol 1990; 31(2):77–80.

    Article  CAS  PubMed  Google Scholar 

  20. Carey WP Jr, Thompson CJ, Synnestvedt M et al. Dysplastic nevi as a melanoma risk factor in patients with familial melanoma. Cancer 1994; 74(12):3118–3125.

    Article  PubMed  Google Scholar 

  21. Hussussian CJ, Struewing JP, Goldstein AM et al. Germline p16 mutations in familial melanoma. Nat Genet 1994; 8(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  22. Kamb A, Gruis NA, Weaver-Feldhaus J et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264(5157):436–440.

    Article  CAS  PubMed  Google Scholar 

  23. de Snoo FA, Hayward NK. Cutaneous melanoma susceptibility and progression genes. Cancer Lett 2005; 230(2):153–186.

    Article  PubMed  Google Scholar 

  24. Platz A, Egyhazi S, Ringborg U et al. Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol 2008; 1(4):395–405.

    Article  PubMed  Google Scholar 

  25. Pollock PM, Harper UL, Hansen KS et al. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33(1):19–20.

    Article  CAS  PubMed  Google Scholar 

  26. Michaloglou C, Vredeveld LC, Soengas MS et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436(7051):720–724.

    Article  CAS  PubMed  Google Scholar 

  27. Gray-Schopfer VC, Cheong SC, Chong H et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 2006; 95(4):496–505.

    Article  CAS  PubMed  Google Scholar 

  28. Florell SR, Meyer LJ, Boucher KM et al. Longitudinal assessment of the nevus phenotype in a melanoma kindred. J Invest Dermatol 2004; 123(3):576–582.

    Article  CAS  PubMed  Google Scholar 

  29. Sviderskaya EV, Gray-Schopfer VC, Hill SP et al. p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis and immortalization: possible implications for melanoma progression. J Natl Cancer Inst 2003; 95(10):723–732.

    Article  CAS  PubMed  Google Scholar 

  30. Dahl C, Guldberg P. The genome and epigenome of malignant melanoma. APMIS 2007; 115(10):1161–1176.

    Article  CAS  PubMed  Google Scholar 

  31. Bennett DC. How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res 2008; 21(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  32. Rizos H, Woodruff S, Kefford RF. p14ARF interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners. Cell Cycle 2005; 4(4):597–603.

    CAS  PubMed  Google Scholar 

  33. Rizos H, Scurr LL, Irvine M et al. p14ARF regulates E2F-1 ubiquitination and degradation via a p53-dependent mechanism. Cell Cycle 2007; 6(14):1741–1747.

    Article  CAS  PubMed  Google Scholar 

  34. Monzon J, Liu L, Brill H et al. CDKN2A mutations in multiple primary melanomas. N Engl J Med 1998; 338(13):879–887.

    Article  CAS  PubMed  Google Scholar 

  35. MacKie RM, Andrew N, Lanyon WG et al. CDKN2A germline mutations in UK patients with familial melanoma and multiple primary melanomas. J Invest Dermatol 1998; 111(2):269–272.

    Article  CAS  PubMed  Google Scholar 

  36. Hashemi J, Platz A, Ueno T et al. CDKN2A germ-line mutations in individuals with multiple cutaneous melanomas. Cancer Res 2000; 60(24):6864–6867.

    CAS  PubMed  Google Scholar 

  37. Auroy S, Avril MF, Chompret A et al. Sporadic multiple primary melanoma cases: CDKN2A germline mutations with a founder effect. Genes Chromosomes Cancer 2001; 32(3):195–202.

    Article  CAS  PubMed  Google Scholar 

  38. Bahuau M, Vidaud D, Jenkins RB et al. Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res 1998; 58(11):2298–2303.

    CAS  PubMed  Google Scholar 

  39. Hewitt C, Lee Wu C, Evans G et al. Germline mutation of ARF in a melanoma kindred. Hum Mol Genet 2002; 11(11):1273–1279.

    Article  CAS  PubMed  Google Scholar 

  40. Petronzelli F, Sollima D, Coppola G et al. CDKN2A germline splicing mutation affecting both p16(ink4) and p14(arf ) RNA processing in a melanoma/neurofibroma kindred. Genes Chromosomes Cancer 2001; 31(4):398–401.

    Article  CAS  PubMed  Google Scholar 

  41. Randerson-Moor JA, Harland M, Williams S et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001; 10(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  42. Rizos H, Puig S, Badenas C et al. A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 2001; 20(39):5543–5547.

    Article  CAS  PubMed  Google Scholar 

  43. Hayward NK. Genetics of melanoma predisposition. Oncogene 2003; 22(20):3053–3062.

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein AM, Chan M, Harland M et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors and uveal melanoma across GenoMEL. Cancer Res 2006; 66(20):9818–9828.

    Article  CAS  PubMed  Google Scholar 

  45. Platz A, Hansson J, Mansson-Brahme E et al. Screening of germline mutations in the CDKN2A and CDKN2B genes in Swedish families with hereditary cutaneous melanoma. J Natl Cancer Inst 1997; 89(10):697–702.

    Article  CAS  PubMed  Google Scholar 

  46. Gruis NA, Sandkuijl LA, van der Velden PA et al. CDKN2 explains part of the clinical phenotype in Dutch familial atypical multiple-mole melanoma (FAMMM) syndrome families. Melanoma Res 1995; 5(3):169–177.

    Article  CAS  PubMed  Google Scholar 

  47. Goldstein AM, Stacey SN, Olafsson JH et al. CDKN2A Mutations and Melanoma Risk in the Icelandic Population. J Med Genet 2008.

    Google Scholar 

  48. Ciotti P, Struewing JP, Mantelli M et al. A single genetic origin for the G101W CDKN2A mutation in 20 melanoma-prone families. Am J Hum Genet 2000; 67(2):311–319.

    Article  CAS  PubMed  Google Scholar 

  49. Zuo L, Weger J, Yang Q et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 1996; 12(1):97–99.

    Article  CAS  PubMed  Google Scholar 

  50. Soufir N, Avril MF, Chompret A et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 1998; 7(2):209–216.

    Article  CAS  PubMed  Google Scholar 

  51. Molven A, Grimstvedt MB, Steine SJ et al. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi and CDK4 mutation. Genes Chromosomes Cancer 2005; 44(1):10–18.

    Article  CAS  PubMed  Google Scholar 

  52. Pjanova D, Molven A, Akslen LA et al. Identification of a CDK4 R24H mutation-positive melanoma family by analysis of early-onset melanoma patients in Latvia. Melanoma Res 2009; 19(2):119–122.

    Article  CAS  PubMed  Google Scholar 

  53. Gillanders E, Juo SH, Holland EA et al. Localization of a novel melanoma susceptibility locus to 1p22. Am J Hum Genet 2003; 73(2):301–313.

    Article  CAS  PubMed  Google Scholar 

  54. Walker GJ, Indsto JO, Sood R et al. Deletion mapping suggests that the 1p22 melanoma susceptibility gene is a tumor suppressor localized to a 9-Mb interval. Genes Chromosomes Cancer 2004; 41(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  55. Jonsson G, Bendahl PO, Sandberg T et al. Mapping of a novel ocular and cutaneous malignant melanoma susceptibility locus to chromosome 9q21.32. J Natl Cancer Inst 2005; 97(18):1377–1382.

    Article  PubMed  Google Scholar 

  56. Begg CB, Orlow I, Hummer AJ et al. Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J Natl Cancer Inst 2005; 97(20):1507–1515.

    Article  CAS  PubMed  Google Scholar 

  57. Goldstein AM, Fraser MC, Struewing JP et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med 1995; 333(15):970–974.

    Article  CAS  PubMed  Google Scholar 

  58. Borg A, Sandberg T, Nilsson K et al. High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J Natl Cancer Inst 2000; 92(15):1260–1266.

    Article  CAS  PubMed  Google Scholar 

  59. Goldstein AM. Familial melanoma, pancreatic cancer and germline CDKN2A mutations. Hum Mutat 2004; 23(6):630.

    Article  PubMed  Google Scholar 

  60. de Snoo FA, Bishop DT, Bergman W et al. Increased risk of cancer other than melanoma in CDKN2A founder mutation (p16-Leiden)-positive melanoma families. Clin Cancer Res 2008; 14(21):7151–7157.

    Article  PubMed  Google Scholar 

  61. Hille ET, van Duijn E, Gruis NA et al. Excess cancer mortality in six Dutch pedigrees with the familial atypical multiple mole-melanoma syndrome from 1830 to 1994. J Invest Dermatol 1998; 110(5):788–792.

    Article  CAS  PubMed  Google Scholar 

  62. Newton Bishop JA, Gruis NA. Genetics: what advice for patients who present with a family history of melanoma? Semin Oncol 2007; 34(6):452–459.

    Article  CAS  PubMed  Google Scholar 

  63. Botkin JR, Smith KR, Croyle RT et al. Genetic testing for a BRCA1 mutation: prophylactic surgery and screening behavior in women 2 years post testing. Am J Med Genet A 2003; 118(3):201–209.

    Article  Google Scholar 

  64. Hadley DW, Jenkins JF, Dimond E et al. Colon cancer screening practices after genetic counseling and testing for hereditary nonpolyposis colorectal cancer. J Clin Oncol 2004; 22(1):39–44.

    Article  PubMed  Google Scholar 

  65. Leachman SA, Carucci J, Kohlmann W et al. Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol 2009; 61(4):677 e671-614.

    Article  CAS  PubMed  Google Scholar 

  66. Kefford RF, Newton Bishop JA, Bergman W et al. Counseling and DNA testing for individuals perceived to be genetically predisposed to melanoma: A consensus statement of the Melanoma Genetics Consortium. J Clin Oncol 1999; 17(10):3245–3251.

    CAS  PubMed  Google Scholar 

  67. Bishop DT, Demenais F, Goldstein AM et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 2002; 94(12):894–903.

    CAS  PubMed  Google Scholar 

  68. National Institutes of Health Consensus Development Conference Statement on Diagnosis and Treatment of Early Melanoma, 1992. Am J Dermatopathol 1993; 15(1):34–43; discussion 46–51.

    Google Scholar 

  69. Ferrini RL, Perlman M, Hill L. American College of Preventive Medicine practice policy statement: skin protection from ultraviolet light exposure. The American College of Preventive Medicine. Am J Prev Med 1998; 14(1):83–86.

    Article  CAS  PubMed  Google Scholar 

  70. Krien PM, Moyal D. Sunscreens with broad-spectrum absorption decrease the trans to cis photoisomerization of urocanic acid in the human stratum corneum after multiple UV light exposures. Photochem Photobiol 1994; 60(3):280–287.

    Article  CAS  PubMed  Google Scholar 

  71. Kenet RO, Kang S, Kenet BJ et al. Clinical diagnosis of pigmented lesions using digital epiluminescence microscopy. Grading protocol and atlas. Arch Dermatol 1993; 129(2):157–174.

    Article  CAS  PubMed  Google Scholar 

  72. Menzies SW, Ingvar C, McCarthy WH. A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma. Melanoma Res 1996; 6(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  73. Kelly JW, Yeatman JM, Regalia C et al. A high incidence of melanoma found in patients with multiple dysplastic naevi by photographic surveillance. Med J Aust 1997; 167(4):191–194.

    CAS  PubMed  Google Scholar 

  74. McGovern TW, Litaker MS. Clinical predictors of malignant pigmented lesions. A comparison of the Glasgow seven-point checklist and the American Cancer Society’s ABCDs of pigmented lesions. J Dermatol Surg Oncol 1992; 18(1):22–26.

    CAS  PubMed  Google Scholar 

  75. Shaw HM, McCarthy WH. Small-diameter malignant melanoma: a common diagnosis in New South Wales, Australia. J Am Acad Dermatol 1992; 27(5 Pt 1):679–682.

    Article  CAS  PubMed  Google Scholar 

  76. Rhodes AR. Intervention strategy to prevent lethal cutaneous melanoma: use of dermatologic photography to aid surveillance of high-risk persons. J Am Acad Dermatol 1998; 39(2 Pt 1):262–267.

    Article  CAS  PubMed  Google Scholar 

  77. Masri GD, Clark WH Jr, Guerry Dt et al. Screening and surveillance of patients at high risk for malignant melanoma result in detection of earlier disease. J Am Acad Dermatol 1990; 22(6 Pt 1):1042–1048.

    Article  CAS  PubMed  Google Scholar 

  78. MacKie RM, McHenry P, Hole D. Accelerated detection with prospective surveillance for cutaneous malignant melanoma in high-risk groups. Lancet 1993; 341(8861):1618–1620.

    Article  CAS  PubMed  Google Scholar 

  79. Tucker MA, Fraser MC, Goldstein AM et al. A natural history of melanomas and dysplastic nevi: an atlas of lesions in melanoma-prone families. Cancer 2002; 94(12):3192–3209.

    Article  PubMed  Google Scholar 

  80. Hansson J, Bergenmar M, Hofer PA et al. Monitoring of kindreds with hereditary predisposition for cutaneous melanoma and dysplastic nevus syndrome: results of a Swedish preventive program. J Clin Oncol 2007; 25(19):2819–2824.

    Article  PubMed  Google Scholar 

  81. Parker JF, Florell R, Alexander A et al. Pancreatic carcinoma surveillance in patients with familial melanoma. Arch Dermatol 2003; 139(8):1019–1025.

    Article  CAS  PubMed  Google Scholar 

  82. Brand RE, Lerch MM, Rubinstein WS et al. Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut 2007; 56(10):1460–1469.

    Article  PubMed  Google Scholar 

  83. Lynch HT, Fusaro RM, Lynch JF et al. Pancreatic cancer and the FAMMM syndrome. Fam Cancer 2008; 7(1):103–112.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hansson, J. (2010). Familial Cutaneous Melanoma. In: Ahmad, S.I. (eds) Diseases of DNA Repair. Advances in Experimental Medicine and Biology, vol 685. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6448-9_13

Download citation

Publish with us

Policies and ethics