Skip to main content

State of the Art on Insect Nicotinic Acetylcholine Receptor Function in Learning and Memory

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 683))

Abstract

Acetylcholine is the most abundant excitatory neurotransmitter in the insect brain and the most numerous acetylcholine receptors are the nicotinic ones (nAChRs). The genome sequencing of diverse insect species has demonstrated the existence of at least 10 nAChR genes coding for α and β subunits, suggesting the existence in the insect CNS of several subtypes of nAChRs whose molecular composition and pharmacological properties are still unknown. Insect nAChRs have given rise to an abundance of literature about their sensitivity to neonicotinoid insecticides but only limited data are available on the functional role of nAChRs in insect cognitive functions. The data we have collected on honeybees are the only data that shed light on the role of nAChRs in learning and memory processes. The behavioral response of proboscis extension (PER), which appears when the honeybee perceives sugar, was used to quantify learning and memory performances in associative and non-associative learning procedures. Habituation of the PER, which consists in ceasing to respond to sucrose upon repetitive antennal sucrose stimulation, was facilitated by the injection into the brain of one of the nicotinic antagonists mecamylamine, alpha-bungarotoxin (α-BGT) or methyllycaconitine (MLA). Pavlovian associative protocol was used to condition the PER to olfactory or tactile stimulus after single- or multiple-trial training. Localized brain injections of the nicotinic antagonist mecamylamine were performed before or after one-trial olfactory learning in the mushroom bodies (MB), the integrative structures of the insect brain. The results showed that the calical input structures of the MB are necessary for the acquisition processes and the output α-lobe regions are involved in retrieval processes. Brain injection of one of the three nicotinic antagonists mecamylamine, α-BGT and MLA was combined with single- and multiple-trial olfactory and tactile learning and memory performances were evaluated at long- or short-term intervals. Mecamylamine impaired the acquisition of one-trial learning and the retrieval of information, regardless of the number of trials during training and the learning modality (olfactory or tactile cues used as conditioned stimulus). Memory performance evaluated at long-term intervals was decreased by injection of α-BGT and MLA in multiple-trial olfactory and tactile experiments. We conclude from these results that at least two subtypes of nAChRs exist in the honeybee brain. The α-BGT-sensitive nAChRs are necessary for the formation of long-term memory and the α-BGT-insensitive nAChRs are involved in one-trial acquisition and in retrieval processes. The hypothesis is put forward that multiple-trial associative learning triggers activation of the α-BGT-sensitive nAChRs that, in turn, activate intracellular events leading to LTM formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dani JA, Bertand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Ann RevPharmacol Toxicol 2007; 47:699–729.

    Article  CAS  Google Scholar 

  2. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Progress Neurobiol 2004; 74:363–396.

    Article  CAS  Google Scholar 

  3. Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opinion Neurobiol 2006; 16:710–715.

    Article  CAS  Google Scholar 

  4. Jensen AA, Frølund B, Liljrfors T et al. Neuronal nicotinic receptors: structural revelations, target identification and therapeutic inspirations. J Med Chem 2005; 48:4705–4745.

    Article  CAS  PubMed  Google Scholar 

  5. Dani JA. Nicotine mechanisms in Alzheimer’s disease. Overview of nicotinic receptors and their roles in the central nervous system. Biol Psychiatry 2001; 49:166–174.

    Article  CAS  PubMed  Google Scholar 

  6. Breer H. Neurochemical aspects of cholinergic synapes in the insect brain. In: Gupta AP ed. Arthropod brain. Its evolution, development, structure and functions. New-York: Wiley, 1987:415–437.

    Google Scholar 

  7. Oleskevitch S. Cholinergic synaptic transmission in insect mushroom bodies in vitro. J Neurophysiol 1999; 82:1091–1096.

    Google Scholar 

  8. Lee D, O’Dowd DK. Fast excitatory synaptic transmission mediated by nicotinic acetylcholine receptors in Drosophila neurons. J Neurosci 1999; 19:5311–5321.

    CAS  PubMed  Google Scholar 

  9. Heinrich R, Hedwig B, Elsner N. Cholinergic activation of stridulatory behavior in the grasshopper Omocestus viridulus (L.). Exp Biol 1997; 200:1327–1337.

    CAS  Google Scholar 

  10. Gauglitz S, Pflüger HJ. Cholinergic transmission via central synapses in the locust nervous system. J Comp Physiol A 2001; 187:825–836.

    Article  CAS  PubMed  Google Scholar 

  11. Breer H, Sattelle DB. Molecular properties and functions of insect acetylcholine receptors. J Insect Physiol 1987; 33:771–790.

    Article  CAS  Google Scholar 

  12. Bicker G. Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Micros Res Tech 1999; 45:174–183.

    Article  CAS  Google Scholar 

  13. Gorczyca M, Hall JC. Identification of a cholinergic synapse in the giant fiber pathway of Drosophila using conditional mutations of acetylcholine synthesis. J Neurogenet 1984; 1:289–313.

    Article  CAS  PubMed  Google Scholar 

  14. Homberg U. Neurotransmitters and neuropeptides in the brain of the locust. Micros Res Tech 2002; 56:189–209.

    Article  CAS  Google Scholar 

  15. Kreissl S, Bicker G. Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J Comp Neurol 1989; 286:71–84.

    Article  CAS  PubMed  Google Scholar 

  16. Scheidler A, Kaulen P, Bruning G et al. Quantitative autoradiographic localization of [125I] α-bungarotoxin binding sites in the honeybee brain. Brain Res 1990; 534:332–335.

    Article  CAS  PubMed  Google Scholar 

  17. Yusuyama K, Meinertzhagen IA, Shürmann FW. Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 2002; 445:211–226.

    Article  Google Scholar 

  18. Haupt S. Central gustatory projections and side-specificity of operant antennal muscle conditioning in the honeybee (Apis mellifera L.). J Comp Physiol A 2007; 193:523–535.

    Article  Google Scholar 

  19. Osborne RH. Insect neurotransmission: neurotransmitters and their receptors. Pharmacol Ther 1996; 69:117–142.

    Article  CAS  PubMed  Google Scholar 

  20. Gundelfinger ED, Schulz R. Insect nicotinic acetylcholine receptors: gene, structure, physiological and pharmacological properties. In: Clementi F, Fornassari D, Gotti C eds. Neuronal nicotinic receptors. Berlin, Heidelberg, New-York: Springer, 2000:497–521.

    Google Scholar 

  21. Barbara G, Zube C, Rybak J et al. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A 2005; 191:823–836.

    Article  Google Scholar 

  22. Barbara GS, Grünewald B, Paute S et al. Cholinergic ionic currents of cultured antennal lobe neurons from adult honeybee brains. Invert Neurosci 2008; 8:19–29.

    Article  CAS  PubMed  Google Scholar 

  23. Déglise P, Grünewald B, Gauthier M. The insecticide imidacloprid is a partial agonist of the honeybee neuronal nicotinic receptor. Neurosci Lett 2002; 321:13–16.

    Article  PubMed  Google Scholar 

  24. Goldberg F, Grünewald B, Rosenboom H et al. Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J Physiol London 1999; 514:759–768.

    Article  CAS  PubMed  Google Scholar 

  25. Wüstenberg DG, Grünewald B. Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J Comp Physiol A 2004; 190:807–821.

    Article  Google Scholar 

  26. Jones AK, Brown LA, Sattelle DB. Insect nicotinic acetylcholine receptors: from genetic model organism to vector, pest and beneficial species. Invert Neurosci 2007; 7:67–73.

    Article  CAS  PubMed  Google Scholar 

  27. Jones AK, Raymond-Delpech V, Thany SH et al. The nicotinic acetylcholine receptor gene family of the honeybee, Apis mellifera. Genome Res 2006; 16:1422–1430.

    Article  CAS  PubMed  Google Scholar 

  28. Millar N, Denholm I. Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invert Neurosci 2007; 7:53–66.

    Article  CAS  PubMed  Google Scholar 

  29. Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology. Annu Rev Pharmacol Toxicol 2005; 45:247–268.

    Article  CAS  PubMed  Google Scholar 

  30. Wenzel B, Hedwig B. Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. J Exp Biol 1999; 202:2203–2216.

    CAS  PubMed  Google Scholar 

  31. Lambin M, Armengaud C, Raymond S et al. Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 2001; 48:129–134.

    Article  CAS  PubMed  Google Scholar 

  32. Armengaud C, Lambin M, Gauthier M. Effects of imidacloprid on the neural processes of memory in the honeybee. In: Devillers J, Pham-Délègue MH, eds. Honeybees: Estimating the environmental impact of chemicals. London: Taylor and Francis, 2002:85–100.

    Google Scholar 

  33. El Hassani AK, Dacher M, Gary V et al. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environm Contam Toxicol 2008; 54:653–661.

    Article  Google Scholar 

  34. Shang Y, Claridge-Chang A, Sjulson L et al. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 2007; 128:601–612.

    Article  CAS  PubMed  Google Scholar 

  35. Olsen S, Bhandawat V, Wilson R. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 2007; 54:89–103.

    Article  CAS  PubMed  Google Scholar 

  36. Bainton RJ, Tsai LT-Y, Singh C et al. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol 2000; 10:187–194.

    Article  CAS  PubMed  Google Scholar 

  37. Hou J, Kuromi H, Fukasawa Y et al. Repetitive exposure to nicotine induces hyper-responsiveness via the camp/PKA/Creb signal pathway in Drosophila. J Neurobiol 2004; 60:249–261.

    Article  CAS  PubMed  Google Scholar 

  38. Ismail N, Robinson GE, Fahrbach SE. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honeybee brain. PNAS 2006; 103:207–211.

    Article  CAS  PubMed  Google Scholar 

  39. Ismail N, Christine S, Robinson GE et al. Pilocarpine improves recognition of nestmates in young honeybees. Neurosci lett 2008; 439:178–181.

    Article  CAS  PubMed  Google Scholar 

  40. Gauthier M, Cano Lozano V, Zaoujal A et al. Effects of intracranial injections of scopolamine on olfactory conditioning retrieval in the honeybee. Behav Brain Res 1994; 63:145–149.

    Article  CAS  PubMed  Google Scholar 

  41. Cano Lozano V, Gauthier M. Effects of the muscarinic antagonists atropine and pirenzepine on olfactory conditioning in the honeybee. Pharmacol Biochem Behav 1998; 59:903–907.

    Article  CAS  PubMed  Google Scholar 

  42. Braun G, Bicker G. Habituation of an appetitive reflex in the honeybee. J Neurophysiol 1992; 67:588–598.

    CAS  PubMed  Google Scholar 

  43. Giurfa M. Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 2007; 193:801–824.

    Article  Google Scholar 

  44. Castellucci VF, Pinsker H, Kupfermann I et al. Neuronal mechanisms of habituation and deshabituation withdrawal reflex in Aplysia. Science 1970; 167:1745–1748.

    Article  CAS  PubMed  Google Scholar 

  45. Bicker G, Hahnlein I. Long-term habituation of an appetitive reflex in the honeybee. Neuroreport 1994; 6:54–56.

    Article  CAS  PubMed  Google Scholar 

  46. Dacher M, Gauthier M. Involvement of NO-synthase and nicotinic receptors in learning in the honeybee. Physiol Behav 2008; 95:200–207.

    Article  CAS  PubMed  Google Scholar 

  47. Guez D, Suchail S, Gauthier M et al. Contrasting effects of imidacloprid on habituation in 7-and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 2001; 76:183–191.

    Article  CAS  PubMed  Google Scholar 

  48. Thany SH, Lenaers G, Crozatier M et al. Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the honey bee brain Apis mellifera. Insect Mol Biol 2003; 12:255–262.

    Article  CAS  PubMed  Google Scholar 

  49. Thany SH, Crozatier M, Raymond-Delpech V et al. Apisα2, Apisα7-1 and Apisα7-2 Three new neuronal nicotinic acetylcholine receptor subunits in the brain of the honeybee Apis mellifera. Gene 2005; 344:125–132.

    Article  CAS  PubMed  Google Scholar 

  50. Müller U, Hildebrandt H. Nitric oxide/cGMP-mediated protein kinase A activation in the antennal lobes plays an important role in appetitive reflex habituation in the honeybee. J Neurosci 2002; 22:8739–8747.

    PubMed  Google Scholar 

  51. Bicker G, Kreissl S. Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. J Neurophysiol 1994; 71:808–810.

    CAS  PubMed  Google Scholar 

  52. Bicker G. Transmitter-induced calcium signalling in cultured neurons of the insect brain. J Neurosci Methods 1996; 69:33–41.

    Article  CAS  PubMed  Google Scholar 

  53. Zayas RM, Qazi S, Morton DB et al. Nicotinic-acetylcholine receptors are functionally coupled to the nitric oxide/cGMP-pathway in insect neurons. J Neurochem 2002; 83:421–431.

    Article  CAS  PubMed  Google Scholar 

  54. Müller U. The nitric oxide system in insects. Progress Neurobiol 1997; 51:363–381.

    Article  Google Scholar 

  55. Bicker G. Nitric oxide: an unconventional messenger in the nervous system of an orthopteroid insect. Arch Insect Biochem Physiol 2001; 48:100–110.

    Article  CAS  PubMed  Google Scholar 

  56. Schuman EM, Madison DV. Nitric oxide and synaptic function. Ann Rev Neurosci 1994; 17:153–183.

    Article  CAS  PubMed  Google Scholar 

  57. Tully T. Drosophila learning and memory revisited. Trends Neurosci 1987; 10:330–335.

    Article  Google Scholar 

  58. Bitterman ME, Menzel R, Fietz A et al. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 1983; 97:107–119.

    Article  CAS  PubMed  Google Scholar 

  59. Menzel R, Bitterman ME. Learning by honeybees in unnatural situation. In: Huber F, Markl H, eds. Neuroethology and behavioural physiology. Berlin Heidelberg: Springer Verlag, 1983; 206–215.

    Google Scholar 

  60. Kish J, Erber J. Operant conditioning of antennal movements in the honeybee. Behav Brain res 1999; 99:93–102.

    Article  Google Scholar 

  61. Giurfa M, Malun D. Associative mechanosensory conditioning of the proboscis extension reflex in the honeybee. Learn Mem 2004; 11:294–302.

    Article  PubMed  Google Scholar 

  62. Erber J, Kierzek S, Sander E et al. Tactile learning in the honeybee. J Comp Physiol A 1998; 183:737–744.

    Article  Google Scholar 

  63. Dacher M, Lagarrigue A, Gauthier M. Antennal tactile learning in the honeybee: effect of nicotinic antagonists on the memory dynamics. Neurosci 2005; 130:37–50.

    Article  CAS  Google Scholar 

  64. Menzel R. Memory dynamics in the honeybee. J Comp Physiol A 1999; 85:323–340.

    Article  Google Scholar 

  65. Menzel R, Manz G, Menzel R et al. Massed and spaced learning in honeybees: the role of CS, US, the intertrial interval and the test interval. Learn Mem 2001; 8:198–208.

    Article  CAS  PubMed  Google Scholar 

  66. Gauthier M, Belzunces LP, Zaoujal A et al. Modulatory effect of learning and memory on honeybee brain acetylcholinesterase activity. Comp Bioch Physiol 1992; 103C:91–95.

    Article  CAS  Google Scholar 

  67. Shapira M, Thompson CK, Soreq H et al. Changes in neuronal acetylcholinesterase gene expression and division of labor in honeybee colonies. J Mol Neurosci 2001; 17:1–12.

    Article  CAS  PubMed  Google Scholar 

  68. Fresquet N, Fournier D, Gauthier M. A new attempt to assess the effects of learning abilities on the cholinergic system: Studies on fruitflies and honeybees. Comp Biochem Physiol 1998; 119B:349–353.

    CAS  Google Scholar 

  69. Mercer A, Menzel R. The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee Apis mellifera. J Comp Physiol A 1982; 145:363–368.

    Article  CAS  Google Scholar 

  70. Kamin LJ. The retention of an incompletely learned avoidance response. J Comp Physiol Psychol 1957; 50:457–460.

    Article  CAS  PubMed  Google Scholar 

  71. Cano Lozano V, Bonnard E, Gauthier M et al. Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behav Brain Res 1996; 81:215–222.

    Article  Google Scholar 

  72. Cano Lozano V. Etude du rôle du système cholinergique dans les processus de mémorisation chez l’abeille. PhD thesis, Université Paul Sabatier Toulouse III, 1997.

    Google Scholar 

  73. Hammer M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 1993; 366:59–63.

    Article  Google Scholar 

  74. Hammer M, Menzel R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 1998; 5:146–156.

    CAS  PubMed  Google Scholar 

  75. Mauelshagen J. Neural correlates of olfactory learning in an identified neuron in the honeybee brain. J Neurophysiol 1993; 69:609–625.

    CAS  PubMed  Google Scholar 

  76. Okada R, Rybak J, Manz G et al. Learning-related plasticity in PE1 neuron and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 2007; 27:11736–11747.

    Article  CAS  PubMed  Google Scholar 

  77. Erber J, Mashur TH, Menzel R. Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol Entomol 1980; 5:343–358.

    Article  Google Scholar 

  78. Devaud JM, Blunk A, Podufall J et al. Using local anaesthetics to block neuronal activity and map specific learning tasks to the mushroom bodies of an insect brain. Europ J Neurosci 2007; 26:3193–3206.

    Article  Google Scholar 

  79. Thany SH, Gauthier M. Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 2005; 1039:216–219.

    Article  CAS  PubMed  Google Scholar 

  80. Cano Lozano V, Armengaud C, Gauthier M. Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol A 2001; 187:249–254.

    Article  Google Scholar 

  81. Dubnau J, Grady L, Kitamoto T et al. Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 2001; 411:476–480.

    Article  CAS  PubMed  Google Scholar 

  82. McGuire S, Le PT, Davis RL. The role of Drosophila mushroom body signaling in olfactory memory. Science 2001; 293:1330–1333.

    Article  CAS  PubMed  Google Scholar 

  83. Gauthier M, Dacher M, Thany S et al. Involvement of alpha-bungarotoxin-sensitive nicotinic brain receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem 2006; 86:164–174.

    Article  CAS  PubMed  Google Scholar 

  84. Buckingham S, Lapied B, Le Corronc H et al. Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 1997; 200:2685–2692.

    CAS  PubMed  Google Scholar 

  85. Courjaret R, Lapied B. Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Mol Pharmacol 2001; 60:80–91.

    CAS  PubMed  Google Scholar 

  86. Lansdell SJ, Millar NS. The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacology 2000; 39:671–679.

    Article  CAS  PubMed  Google Scholar 

  87. Tomizawa M, Casida JE. Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manag Sci 2001; 57:914–922.

    Article  CAS  PubMed  Google Scholar 

  88. Cayre M, Buckingham SD, Yagodin S et al. Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine and dopamine. J Neurophysiol 1999; 81:1–14.

    CAS  PubMed  Google Scholar 

  89. Yu D, Baird GS, Tsien RY et al. Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J Neurosci 2003; 23:64–72.

    PubMed  Google Scholar 

  90. Jiang SA, Campusano JM, Su H et al. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels. J Neurophysiol 2005; 94:491–500.

    Article  CAS  PubMed  Google Scholar 

  91. Campusano JM, Su H, Jiang SA et al nAChR-mediated calcium responses and plasticity in Drosophila Kenyon cells. Develop Neurobiol 2007; 67:1520–1532.

    Article  CAS  Google Scholar 

  92. Müller U. Ca2+/calmodulin-dependent nitric oxide synthase in Apis mellifera and Drosophila melanogaster. Europ J Neurosci 1994; 6:1362–1370.

    Article  Google Scholar 

  93. Müller U, Bicker G. Calcium-activated release of nitric oxide and cellular distribution of nitric oxide-synthesizing neurons in the nervous system of the locust. J Neurosci 1994; 14:7521–7528.

    PubMed  Google Scholar 

  94. Müller U. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 1996; 16:541–549.

    Article  PubMed  Google Scholar 

  95. Thany SH. Caractérisation des différentes sous-unites des récepteurs nicotiniques neuronaux chez l’abeille, Apis mellifera. PhD thesis, Université Paul Sabatier Toulouse III, 2004.

    Google Scholar 

  96. Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006; 443:931–949.

    Article  Google Scholar 

  97. Romanelli MN, Gualtieri F. Cholinergic nicotinic receptors: competitive ligands, allosteric modulators and their potential applications. Med Res Rev 2003; 23:393–426.

    Article  CAS  PubMed  Google Scholar 

  98. Farooqui T, Robinson K, Vaessin H et al. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 2003; 23:5370–5380.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Gauthier, M. (2010). State of the Art on Insect Nicotinic Acetylcholine Receptor Function in Learning and Memory. In: Thany, S.H. (eds) Insect Nicotinic Acetylcholine Receptors. Advances in Experimental Medicine and Biology, vol 683. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6445-8_9

Download citation

Publish with us

Policies and ethics